航空航天港

 找回密码
 注册会员

QQ登录

只需一步,快速开始

返回列表
楼主: hkhtg090201
收起左侧

[科普] 世界航天自动化(空间机器人robot等)发展专题:ISS完成世界首次卫星加油演示

[复制链接]
 楼主| hkhtg090201 发表于 2013-8-6 19:07 | 显示全部楼层


----------------

国际太空站机器人服务测试平台正在升级

新闻发布时间:2013-08-06

  [据美国aviationweek网站2013年7月29日报道] 用于 NASA“机器人在轨燃料加注任务”(RRM)第二阶段任务的硬件随同日本第四艘H-II转移飞行器(HTV-4),于8月4日飞往国际太空站,RRM是一个与空调设备尺寸相当的测试平台。
  
  在执行卫星修理和燃料加注的试验后,Dextre机械臂将演练更为复杂的工作。戈达德太空飞行中心的工程师研发了RRM,用以演示验能够胜任服务在轨卫星机器人,在轨卫星服务包括维修、重新定位或燃料加注,通过在轨服务能使卫星延长寿命。加拿大航天局(CSA)负责提供机器人技术。
  
  RRM 的项目经理McGuire和其团队设计了一个装有固定的维修装置的盒子,并生产了一套机械臂操纵工具。
  
  RRM于2011年7月随最后一次美国航天飞机任务送往国际太空站。在试验的第一阶段已经执行了多项任务。RRM的第二阶段将在试验平台的空槽上安装一个“任务板”,替换以前的任务板。新任务板上安装了任务所需的不同硬件。
  
  “可视检查机器人工具”(Vipir)是第二阶段操作任务的新工具。该工具将用于演示验证轨道航天器的半自主内部检查。Vipir将操作一台照相机进入模拟卫星结构,一些“决策盒子”安装在此,Vipir将尝试在不将其穿透的情况下通过它们。
  
  第二阶段还将重新组装第一阶段中断开的低温阀。新任务还包括机器人操作连接器,当已连接时太阳能LED灯会显示给地面的工程师,还将使用增压氮气和测量仪器检查开放铝管的堵漏试验。(中国航天系统科学与工程研究院 张肇瑞 陈菲)
  
 楼主| hkhtg090201 发表于 2013-8-21 18:34 | 显示全部楼层
本帖最后由 hkhtg090201 于 2013-8-21 20:43 编辑

机器人加油任务第2阶段启动(图片​​
Robotic Refueling Mission Gears Up for Phase 2(图片)
Posted by Doug Messier on August 4, 2013, at 12:28 pm in News
Tags: htv, iss, jaxa, nasa, robotic refueling mission, space station. 标签:HTV,ISS,雅克萨,空间站。


It may be called the Robotic Refueling Mission (RRM), but NASA built RRM to demonstrate much more than just robotic satellite refueling.
它可以称为机器人加油任务(RRM),但NASA建造RRM要去演示的 远远超过只是机器人卫星加油。

In its second phase, RRM is now moving on to demonstrate how a space robot can complete intermediate tasks required to replenish croygen in the instruments of “legacy” satellites: existing, orbiting spacecraft that were not designed to be serviced. Initial activities to demonstrate this on-orbit capability were completed in March and June 2012 with the aid of the original RRM tools and activity boards.
           在它的第二阶段,RRM现在进展到 去演示  一个太空机器人如何可以完成,需要补充croygen的仪器中间任务“遗产”现有的卫星:,轨道航天器的设计进行维修。初步活动演示与原来的援助,这在20123月和6月完成在轨能力 RRM工具和活动板。


Phase 2 began on Saturday with the launch of new RRM hardware to the International Space Station (ISS) aboard the Japanese H-II Transfer Vehicle 4 (HTV-4). Additional hardware will be launched in early 2014. Operations with the Canadian Space Agency’s Dextre robot are planned to resume in 2014.
           上周六开始第2阶段,随着 新的RRM硬件乘坐日本的H-II转移飞行器(HTV-4)发射到ISS。附加的硬件将在2014年年初推出。与加拿大宇航局的专用灵巧操作机器人计划于2014年恢复

         
     
The Phase 2 hardware complement consists of:
      第2阶段补充的硬件包括:

Two new RRM task boards,The RRM On-orbit Transfer Cage: an original device developed by SSCO to transfer hardware outside of the International Space Station, and
           1.两个新的RRM任务板

           2.一个RRM在轨传输笼:一个SSCO  开发的原始设备,(用于)去转移 ISS外部的硬件,和

The Visual Inspection Poseable Invertebrate Robot (VIPIR): an SSCO-built borescope inspection tool that provides a set of eyes for internal satellite repair jobs.
           3. 一个目视检查Poseable无脊椎动物机器人(VIPIR):内置SSCO的内窥镜检查工具,提供了一组内部卫星维修工作的眼睛。


   

New RRM Task Boards and Tools, Installed Robotically
新的 RRM任务板和工具,被自动安装

Image of the RRM On-orbit Transfer Cage, captured during launch preparations at NASA’s Goddard Space Flight Center. (Credit: NASA)
RRM在轨道上转移笼图象, 在 发射筹备工作期间拍摄,地点在 NASA戈达德太空飞行中心。 (来源: NASA)

         

After the payload arrives at Space Station, astronauts will mount the new RRM Task Board 3 to the top of the RRM On-orbit Transfer Cage (ROTC), an original device developed by NASA’s Satellite Servicing Capabilities Office to transfer hardware outside of the ISS. Crew members will then install the ROTC onto the Japanese Experiment Module (JEM) airlock slide table.
        到有效负载到达 空间站之后,宇航员将安装新的RRM任务面板3到RRM的顶部 在轨道上转让凯奇(ROTC),原始设备开发 NASA的卫星服务能力办公室以外的硬件转移 ISS。乘员将安装后备军官训练队,到日本试验舱段(JEM)气闸滑台。

The Japanese Experiment Module on the ISS. (Credit: JAXA)
ISS日本试验舱段 (来源:JAXA)

       Space Station’s Dextre robot — the same handyman that executes RRM operations — will then remove Task Board 3 and attach it to an empty section on the top of the RRM module. This robotic transfer will be entirely controlled from the ground without astronaut assistance.
        空间站的专用灵巧机器人  - 一个类似于执行RRM操作的勤杂工    - 然后将移除任务板3,并将它附加到一个空部分的顶部 RRM 舱段。这种机器人的转让将完全控制离地面不宇航员援助。


A second launch in early 2014 will deliver the new RRM Task Board 4 and the Visual Inspection Poseable Invertebrate Robot (VIPIR) to the ISS for installation.
          于2014年初的第二次发射,将交付新的RRM任务板 4   和 视觉检查Poseable无脊椎动物机器人(VIPIR) 以安装到ISS。


Task Board 3
任务板3


Task Board 3. (Credit: NASA) 任务板3

RRM Task Board 3 is packed full of adapters and indicators to help RRM and Dextre demonstrate how space robots can replenish cryogen in the instruments of “legacy” satellites: existing, orbiting spacecraft that were not designed to be serviced.
RRM任务板3被适配器和指示器挤得满满的,以帮助RRM和专用灵巧演示如何,空间机器人可以补充制冷剂仪器   “遗产”  现有的卫星:,轨道航天器的设计进行维修。

On the far left of the task board is the Pressure Test System (PTS), which provides the plumbing required to demonstrate an on-orbit seal of a robotically installed vent plug. PTS consists of three Multifunction Tool Valve Interfaces and a pressure gauge. During operations, the Multifunction Tool (MFT) will couple with the Vent Plug Adapter (VPA). The MFT with the connected VPA will then seal into the 2-inch vent tube located to the right of the PTS.
           在任务板的最左边是压力测试系统(PTS)提供所需的管道演示在轨密封的机器人安装的排气塞。 PTS由三个多功能工具的阀门接口和一个压力表。在操作过程中,多功能工具(MFT)夫妇与排气插头适配器​​VPA)。与所连接的丙戊酸钠的MFT,然后密封到2英寸的排气管位于右侧的的PTS



Next, there is the Continuity Indicator (COIN), seen in the middle of the task board. With the Multifunction Tool using the Wire Harness Adapter (WHA) and Electrical Plug Adapter (EPA) to plug into 2 separate outlets on the vent panel, the COIN provides the circuit required to demonstrate an on-orbit connection of a robotically installed electrical plug. LEDs on the COIN indicate if the plug is mechanically mated and the circuit is electrically energized.
      下一步,有连续性指示器(COIN),看到它在任务板中间。随着多功能工具使用线束适配器(WHA)和电插头适配器​​EPA)插入通风口面板上的2个独立的店铺,硬币提供了所需的电路演示在轨连接的机器人安装的电器插头。硬币上的LED显示,如果插头被机械接合和电路通电。


On the far right of the task board is the Coolant Line Adapter (CLA). The Multifunction Tool will use it to interface with the Coolant Valve Panel (CVP) on RRM and simulate installing a coolant line hose and bayonet into an open port of a satellite.
在最右边的任务板冷却液线适配器(CLA)。多功能工具将使用接口冷却阀面板(CVP RRM和模拟冷却剂软管和刺刀安装卫星进入一个开放的端口。


Task Board 4 and the Visual Inspection Poseable Invertebrate Robot (VIPIR)
任务板4Visual检查Poseable:无脊椎动物机器人(VIPIR


A second shipment of hardware in 2014 will bring a second task board and an exciting new device named VIPIR, the Visual Inspection Poseable Invertebrate Robot: an SSCO-built borescope inspection tool that provides a set of eyes for internal satellite repair jobs.
         第二硬件出货在2014年将带来第二个任务板和令人兴奋的新的移动设备名为VIPIR的,目视检查Poseable的无脊椎动物机器人:的内置SSCO内窥镜检查工具,它提供了一套眼睛内部卫星维修工作。


With the help of the twin-armed Dextre handyman, RRM will work its way through intermediate steps leading up to cryogen replenishment. After retrofitting valves with new hardware, peering into dark places with the aid of VIPIR, and creating a pressure-tight seal, the RRM and Dextre duo will stop short of actual cryogen transfer.
           凭借双臂专用灵巧勤杂工的帮助,RRM将其工作方式,通过中间步骤,补充制冷剂。改造后阀与新硬件,暗处窥视与VIPIR借助,并创建一个耐压密封,在 RRM和专用灵巧二人的将停止实际制冷剂转移。


RRM Phase 2 operations are scheduled to begin in 2014. Initial activities to demonstrate this on-orbit capability — cutting wires and removing caps — were completed in 2012 with the aid of the original RRM tools and activity boards.
          RRM2阶段行动计划在2014年开始初步活动去演示这些在轨能力  - 切割线和去除盖帽  - 已在2012年完成,使用原来的援助 RRM工具和活动板


 楼主| hkhtg090201 发表于 2013-8-21 18:36 | 显示全部楼层
NASA“机器人燃料加注任务”(RRM)为第二阶段任务做准备(图)
新闻发布时间:2013-08-20
  [本站2013年8月20日综合报道]    NASA的“机器人在轨燃料加注任务”(RRM)将不限于利用机器人给卫星加注燃料的任务。

  在RRM第二阶段任务中,将演示验证机器人如何在模拟卫星的设施中完成加注燃料必要的中间任务。这些模拟卫星是非专用于接受服务的在轨航天器。2012年3月~6月,NASA开展了初步活动,利用原有的RRM工具和活动平台演示验证了这项在轨能力。

  8月3日,日本H-2转移飞行器4(HTV-4)搭载RRM硬件飞往国际太空站,RRM第二阶段任务由此开始。其他硬件将在2014年早些时候发射,加拿大航天局的Dextre机械臂预计在2014年重新开始进行操作。

  第二阶段的硬件包括:
  两个新RRM任务平台;
  RRM在轨转移架:一个由NASA卫星服务能力办公室(SSCO)研制的用于转移国际太空站外部硬件的装置;
  视觉检查灵活无骨机器人(VIPIR):一个由SSCO建造的针孔观察仪检查工具,可对内部卫星维修工作提供监视。

  有效载荷抵达国际太空站后,宇航员将把“3号RRM任务板”安装在RRM在轨转移架(ROTC)的顶端,ROTC是一个由SSCO 研制用于运输国际太空站外部硬件的装置。然后,国际太空站乘员将在日本实验舱(JEM)气闸滑动台上安置ROTC。

RRM_ROTC.jpeg
在轨转移架(ROTC)

  
  国际太空站执行RRM操作的Dextre机械臂将移除“3号任务板”,并将其附着在RRM模块顶端的一个空缺的结构上。此次机械转移操作将完全由地面操控,无需宇航员辅助。2014年的第二次发射中,将把“4号RRM任务板”和VIPIR送入国际太空站进行安装。

Task-Board-3-Graphic-light.jpg
3号任务板

  
  RRM“3号任务板”上布满了适配器和指示器,帮助RRM和Dextre机械臂演示验证航天机器人如何为“非专用燃料加注卫星”加注低温液体。

  RRM第二阶段操作预计在2014年开始。初步活动——切割导线和移除装置已在2012年完成。(中国航天系统科学与工程研究院 陈菲)

snowtiger 发表于 2013-8-21 18:59 来自航空航天港手机版! | 显示全部楼层
hkhtg090201 发表于 2013-8-21 18:36

低温液体,加注的到底是啥
 楼主| hkhtg090201 发表于 2013-12-8 17:12 | 显示全部楼层
俄太空机器人可代替人类完成太空行走任务腾讯科学
  2013年12月03日08:02
   
   

  • [导读]这款机器人看上去非常自信的模样,不久它将抵达国际空间站服役,有望代替宇航员完成太空行走作业。






转播到腾讯微博

                               
登录/注册后可看大图


SAR-401机器人能够与人类形成“镜像动作”

转播到腾讯微博

                               
登录/注册后可看大图


俄罗斯太空机器人SAR-401,不仅能在空间站内部执行任务,还可代替人类执行太空行走
   
  

腾讯科学(悠悠/编译) 据国外媒体报道,该原型机器人叫做SAR-401,具有类似人体的躯干,它可适用于国际空间站之外的太空操作,通过模拟太空舱内人类手臂和手指动作完成相应工作。预计最早2014年将抵达国际空间站服役
  

图中所示,SAR-401机器人正在模拟操作者的动作,它将代替宇航员完成太空行走任务,从而降低宇航员在危险太空行走中所带来的伤害。
   

未来SAR-401机器人或将成为太空“主角”,美国宇航局已研制Robonaut机器人,并在国际空间站执行例行性维修任务;近期抵达太空的机器人还有日本小型机器人Kirobo,但以上两种机器人均不适合于太空舱外作业。
   

据悉,在SAR-401机器人未抵达空间站之前,“德克斯特机器人”和“Canadarm2机器人”执行空间站外部维修和搬运工作。预计这款机器人最早于2014年抵达国际空间站。
   
   



 楼主| hkhtg090201 发表于 2013-12-12 11:18 | 显示全部楼层

NASA为空间站的机器太空人2号开发“腿”
NASA Developing Legs for Space Station'sRobonaut 2
December 9, 2013  RELEASE 13-363
http://www.nasa.gov/press/2013/december/nasa-developing-legs-for-space-stations-robonaut-2/

http://bbs.9ifly.cn/thread-2867-8-1.html




NASAengineers are developing climbing legs for the International Space Station'srobotic crewmember Robonaut 2 (R2), marking another milestone in space humanoidrobotics.
NASA工程师们正在为ISS的机器人乘员机器太空人2号(R2)开发(可)攀登标志着航天人形机器人的另一个里程碑
            
The legless R2, currently attached to asupport post, is undergoing experimental trials with astronauts aboard theorbiting laboratory. Since its arrival at the station in February 2011, R2 hasperformed a series of tasks to demonstrate its functionality in microgravity.
一个无腿的R2,当前连接到一个支撑柱上,正在ISS进行实验 的试验与宇航员搭乘轨道实验室。由于它的到来在 该站于20112月,R2已经完成了一系列任务来 演示其在微重力的功能。
     

[image-51]
These new legs, funded by NASA’s HumanExploration and Operations and Space Technology mission directorates, willprovide R2 the mobility it needs to help with regular and repetitive tasksinside and outside the space station. The goal is to free up the crew for morecritical work, including scientific research.
这些新的腿,受到NASA载人探险与业务和空间技术任务高级理事会的资助,将提供给R2需要的移动性 ,以帮助其在空间站内部和外部(从事)规律性和重复性的任务。目标是腾出乘员(的时间以从事)更重要的工作,包括科学研究。
                    
"NASA has explored with robots formore than a decade, from the stalwart rovers on Mars to R2 on thestation," said Michael Gazarik, NASA's associate administrator for spacetechnology in Washington."Our investment in robotic technology development is helping us to bolsterproductivity by applying robotics technology and devices to fortify and enhanceindividual human capabilities, performance and safety in space."

“NASA机器人的探索已超过十年,从在火星的伟岸漫游器到位于该站上的R2 “ 迈克尔Gazarik说,他是华盛顿NASA空间技术协理署长。“我们在机器人技术方面的投资开发正在帮助我们通过应用机器人技术和设备,以巩固和提升个体人的能力,增强生产力,在空间性能和安全性

                     
Once the legs are attached to the R2 torso,the robot will have a fully extended leg span of 9 feet, giving it greatflexibility for movement around the space station. Each leg has seven jointsand a device on what would be the feet called an end effector, which allow therobot to take advantage of handrailsand sockets inside and outside the station. A vision system for the endeffectors also will be used to verify and eventually automate each limb'sapproach and grasp.

一旦这些腿连接到R2的躯干上,该机器人的腿完全伸展开将有9英尺的跨度,使它活动于空间站的运动(有了)很大的灵活性。每条腿有七个关节,以及一个称为末端执行器的设备将作为脚’这使得该机器人在该站内部和外部 获得 抓住扶手和插座的?有利条件。一个末端效应器的视觉系统也将被用于验证,并最终实现每个肢体移动和抓取的自动化

                  

NASA engineers have built the legs and R2 will be receiving themearly next year. The new legs are designed for work both inside and outside thestation, but upgrades to R2's upper body will be necessary before it can beginwork outside the space station.

    NASA工程师们建造了这些‘腿’,并且R2将在明年早期接收到他们。新的腿设计为(可)在 该站的内外工作,但升级R2的上半身将是必要的,(这样)才可以使它开始在空间站外面工作
                     
Technologies developed for Robonaut haveled to new robotic devices for future spaceflight that also have directapplications here on Earth. For example, NASA is developing a roboticexoskeleton that could help astronauts stay healthier in space and also aidpeople with physical disabilities.

太空机器人的技术开发导致了未来航天的新机器人设备,这些在地球上也有直接的应用。例如,NASA正在开发一种机器人外骨骼,可以帮助宇航员在太空保持健康,也有助于身体残疾的人们。

                    
R5, next in NASA's Robonaut series ofrobots, will debut later this month when it competes in the Defense AdvancedResearch Project Agency's (DARPA) Robotics Challenge. During the challenge,robots will demonstrate capabilities to execute complex tasks in dangerous,degraded, human-engineered environments. Competing teams are expected to focuson robots that can use standard tools and equipment commonly available in humanenvironments, ranging from hand tools to vehicles, with an emphasis onadaptability to tools with diverse specifications.

R5NASA的下一个(机器人的)太空机器人系列,将在本月晚些时候亮相,那时,它将竞争美国国防高级研究计划局(DARPA)的机器人挑战赛。在挑战期间,机器人将演示在危险的、降级的、人为设计的环境(条件)下执行复杂任务的功能。参赛队伍预计将集中于机器人,可以使用标准工具和设备常用的人文环境,从手工工具到 运载器,重点放在适应与不同规格的工具

     

The International Space Station serves as atest bed for future technologies that will be vital to human exploration asNASA explores asteroids and Mars. NASA's Space Technology Program isinnovating, developing, testing and flying hardware for use in NASA's futuremissions.
ISS作为为NASA载人探索小行星和火星服务的未来技术的试验平台,将是至关重要的。NASA空间技术方案的创新、发展,测试和飞行硬件将用于NASA未来的任务中。
               
   Formore information on the DARPA Robotics Challenge, visit:
http://go.usa.gov/We9W

For information about Robonaut, visit:
http://www.nasa.gov/robonaut

For more information about NASA's SpaceTechnology Mission Directorate, visit:
http://www.nasa.gov/spacetech




PS:几个问题:
  1. 在太空,有腿的好处?  -- 自由攀登?。
  2. 空间站内有各种电线,各种实验设备,看着很乱,怎么保证有腿的机器人不‘闯祸’。
  3. 大概什么时候结束测试,进入业务状态?

------------------------------------------
4. 这些特定的太空机器人 都可以做什么类型的例行工作?
打扫卫生?插拔插头?开关操作?移动物体(大件?小件)?
检看设备(作为眼睛使用),读取仪表数据?查看设备正常否?

panda888 发表于 2013-12-12 13:06 | 显示全部楼层
当地时间2013年12月10日,美国航空航天局继2010年全球首个机器人宇航员“Robonaut 2”研发成功后,又对“Robonaut 2”研发出具备攀爬功能的“Robonaut 2”,新的“Robonaut 2”机器人具有双腿,可以完成行走和攀爬的动作,这标志着太空机器人又一个里程碑。目前新型“Robonaut 2”在空间站轨道实验室处于试验阶段,计划明年年初进入国际空间站。

高清组图
http://news.xinhuanet.com/photo/2013-12/12/c_125846380.htm
panda888 发表于 2013-12-13 15:16 | 显示全部楼层
本帖最后由 padamsli 于 2013-12-13 15:18 编辑

http://slide.mil.news.sina.com.cn/slide_8_646_27214.html
高清图集:美国航天局火星机器人项目曝光 绰号女武神

11.jpg

近日,美国宇航局(NASA)刚刚揭开了名为Valkyrie的“超级英雄机器人”的神秘面纱。Valkyrie其名来源于北欧神话中奥丁神的婢女,开发于美国约翰逊航天中心,身高1.89米、重124.7公斤,是DARPA发起的“机器人挑战赛”的设计作品之一。它的名字似乎暗示了它是一名“女性”。

虽然名义上是用于火星探测。但是美国军方在其中也有参与。未来搞不好会上战场。

Valkyrie的胸前亮着一个类似钢铁侠的指示灯,而腰部和关节也有着不错的自由度。至于它的动力来源,则是存储于背包之中,据悉动力大约能支撑1个小时。Valkyrie配备了声纳和激光雷达,头部、手部、腹部和腿部也都有传感器。

此外,腿部的摄像头也能够帮助机器人从多个角度进行环境观察。Valkyrie能够不受限制地四处走动,拿起并操作物体。美国航空航天局认为,Valkyrie将把探索太空作为它的使命之一,比如执行火星殖民等任务。

视频:
http://video.sina.com.cn/v/b/121657442-1499104401.html
linmy 发表于 2013-12-13 15:25 | 显示全部楼层
padamsli 发表于 2013-12-13 15:16
http://slide.mil.news.sina.com.cn/slide_8_646_27214.html
高清图集:美国航天局火星机器人项目曝光 绰号 ...

很有科幻感觉。
 楼主| hkhtg090201 发表于 2014-4-20 22:11 | 显示全部楼层



PS:  ISS上 R2的 腿,刚刚由 'SpX-3/CRS3' 发到ISS,这里有一些补充信息
  
  ------------------------------------------
  
空间站机器人宇航员正期待着给他送来的‘腿’
Space station's Robonaut awaitsdelivery of legs

http://www.spaceflightnow.com/falcon9/009/140416robonaut/#.U1PRn1WSxyw

http://www.spaceflightnow.com/falcon9/009/status.html

     
腿的发射@ 9ifly
    http://bbs.9ifly.cn/thread-11054-8-1.html
        

1905 GMT (3:05 p.m. EDT)  2014-04-14
   
The Dragon spacecraft is packed withapproximately 2.4 tons of scientific experiments, provisions and maintenanceitems.
龙航天器携带了约2.4吨(货物,包括)科学实验,储备物资和维护项目。
         
Among the supplies packed inside are twolegs for NASA's Robonaut 2 humanoid robot aboard the International SpaceStation. The legs will be affixed to the robot's torso and head, which launchedto the complex on a 2011 space shuttle mission.
其中里面包装的补给 作为ISSNASA仿人机器人宇航员-2号的两条腿。腿将被固定在该机器人的躯干和头部(?),(R2)在2011由航天飞机任务 发射 到了 这个(太空)联合体内。
                  
"Robonaut is an example of how we canuse robots for reptitive and dangerous tasks in space," said Andy Petro,head of NASA's small satellite technology development program.
“为了在太空中reptitive和(避免)危险任务,机器人宇航员是我们如何能够使用机器人的一个例子 ”安迪Petro说,他是NASA的小卫星技术开发计划负责人。
      
Petro said the legs will be unpacked andattached to Robonaut 2 in thecoming months, with an eye toward testing the assembled robot within theconfines of the space station's pressurized modules in August or September.

Petro说 这个腿 将被解包 并在未来几个月内安装到机器太空人-2身上,在八月或九月,with an eyetoward(将看到即将到来的) 在空间站加压舱段中 测试这个组装的机器人。

                  
"We call them legs," Petro said."They're not really for walking in the zero gravity environment. They'reused for climbing around."
“我们把他们叫做腿,” Petro说。“(但是)他们不是真的在零重力环境下行走。他们用于(在附近)四周做攀登。
                 
The legs have seven joints to give Robonautflexibility when moving around the station.
该腿有七个关节,可使机器太空人灵活地在该站范围内移动。
              
"At the end, instead of feet they haveclamping devices to allow them to connect to handrails and other objects on thespace station."
“在末端,而不是(所谓的)脚,他们有夹紧装置,以使它们在空间站内能够联结到扶手和其他物体上。
                 

A power backback will be launched to thespace station this summer to finish outfitting Robonaut to move around on itsown. Right now, the robot can only be powered through an extension cordconnected to the space station's electrical supply.
今年夏天,一个电源后备包 将发射 到空间站,以完成机器太空人的舾装, 从而依靠它自己漫游移动。眼下,该机器人仅可以 通过一条连接到空间站电源的延长线来 提供动力。
               
Officials plan for Robonaut to eventuallybe able to go outside the space station to conduct routine maintenance,reducing astronauts' exposure to the the risks of spacewalks.
官员们计划 机器人宇航员 最终能到空间站外面去,实施例行的维护保养,减少(真人)宇航员暴露在太空行走中的风险。
               
… .. …

The legs were built in 2012 and have completeda series of tests on the ground to certify them for flight to the spacestation, according to Petro.

The initial checkout ofthe legs with Robonaut will include joint health tests, simple joint motions,and the opening and closing of the grippers at the end of the legs, which areaccompanied by a vision system to verify and eventually automate each legmovement, according to a NASA fact sheet.
  
  Robonaut will gothrough this summer's tests powered by an extension cord before the backpack'slaunch on another SpaceX cargo flight later this year.

Since its launch in2011, the legless R2 has demonstrated its ability to complete tasks such aspressing buttons, flipping switches, turning knobs and wiping down handrails.Astronaut Tom Marshburn also tele-operated the robot to catch a free-floatingobject inside the space station, according to NASA.
  ... 它有能力完成诸如按下按钮,翻转开关,转动旋钮  和 抹下来扶手任务。 ....
  
   Developed inpartnership with General Motors, Robonaut 2 builds upon more than a decade ofNASA experimentation and testing with humanoid robot concepts.
   
R2 is covered with thousands of sensors, a camera in itshead and control electronics in its torso.
   
     
    r2_400533.jpg

 楼主| hkhtg090201 发表于 2014-8-17 20:37 | 显示全部楼层
ATV一5递送了ISS机器人加油任务第二演示阶段的第二部分硬件。第一部分硬件在2013年由HTV递送。

http://www.parabolicarc.com/2014/08/16/rrm-hardware/
 楼主| hkhtg090201 发表于 2014-8-17 20:43 | 显示全部楼层

回顾这里,ATV一5递送的就是这里所说的VIPIR无骨视觉机器人。
 楼主| hkhtg090201 发表于 2014-9-1 06:24 | 显示全部楼层

  ISS上的R2按上腿,年末开走
   http://www.floridatoday.com/story/tech/science/space/2014/08/30/space-notebook-robonaut-gets-legs-new-horizons-pluto-bound/14871837/
 楼主| hkhtg090201 发表于 2014-10-22 09:28 | 显示全部楼层
灵活的“触须机器人”可以协助行星探索(任务)
Flexible'Tentacle Robots' Could Aid Planetary Exploration
   October 10, 2014 08:00am ET
  http://www.space.com/27399-tentacle-robots-planetary-exploration.html
        
    有腿的R2地面测试视频(for ISS)(有足部锁定支撑定位部分):

http://www.space.com/23901-space-station-robonaut-to-get-legs-video.html

      
  Space robots are about to get a whole lotsleeker and slinkier.
太空机器人即将得到全部很多时尚 slinkier
               
Researchersare developing new types of robotic systems inspired by elephant trunks,octopus arms and giraffe tongues. These flexible, maneuverable "tentaclerobots" could have a variety of space applications, from inspectinghard-to-reach gear on the International Space Station to exploring crevices on Mars, scientists say.
大象鼻子、章鱼胳膊和长颈鹿舌头的启发,研究人员正在开发新型机器人系统。这些灵活、机动的“触角机器人” 可以有多种太空应用 ,从检查ISS上难以达到的装置,到对火星(岩石)裂缝的探索,科学家们说。
            
"Thoseare all things that would be difficult for a conventional robot to do,"roboticist Ian Walker of Clemson University said in Aprilduring a presentation with NASA's Future In-Space Operations working group.[The 6 Strangest Robots Ever Created]
“对于制造传统的机器人来说,所有这些事情将是困难的” 克莱姆森大学的机器人专家伊恩·沃克协同NASA未来空间业务工作小组 在四月份所做的一个报告中说。
有史以来建造的6个最奇怪的机器人

http://www.livescience.com/42573-strangest-robots-ever-created.html]

               

图片:Robotic systems inspired by elephant trunks,octopus arms and other structures found in nature could have a variety of spaceapplications, experts say.

Credit:Ian Walker, Clemson University
机器人系统设计灵感来自大象的鼻子、章鱼臂和其他结构在自然界中发现可能有多种空间应用 ,专家们说。 来源:伊恩·沃克 ,克莱姆森大学
                    
A new kind of robot
一种新型机器人
               
Theconventional robots to which Walkerrefers are mainstays of assembly lines around the world. They tend to beanthropomorphic, often modeled after the human arm, and are built to doone thing and do it well, over and over again.
在世界各地,针对传统的行走机器人 成为 装配线的骨干。他们趋向于拟人化 ,常常模仿人类的手臂而制作,并且建造为(只)做一件事情,并做好它,一遍又一遍
                     

Thesemachines perform precision tasks in highly structured environments, with limitedflexibility and adaptability, Walkersaid.
这些(传统)机器在高度结构化的环境中执行精确的任务,(这决定了其只具备)有限的灵活性和适应性,沃克说。
                       
"Whatwe want to do is something rather different than that," he said.The goal is to develop "something that can adapt its shape more completelydown its structure, and to be able to adapt to environments you haven'tseen before. So it's the non-factory scenario, in many ways."
“我们想要做的东西相比起这个颇为不同,” 他说。这个的目标是开发 “一些东西,其可以更完全地塌陷其结构以适应它的形状,并能适应你以前从未见过的环境。所以,它是非原厂方案 ,在许多方面“。
               
Suchsnakelike robots could aid spaceflight and exploration, Walker said.
这种蛇形机器人可有助于航天和探索 ,沃克说。
                          
Forexample, astronauts could send them into rock cracks on the moon, Mars andother alien worlds, gathering data about intriguing environments thatwould otherwise be inaccessible or dangerous to explore. And relatively stouttentacle robots could help rovers anchor themselves when need be.
例如 ,宇航员们可以将它们发送到月球、火星和其他外星世界上的岩石裂缝中 ,收集有关使人感兴趣环境中的数据,否则(这些环境)将无法访问,或者探索很危险。同时当需要的时候,相对粗壮的触手机器人可以帮助 巡视器锚定自己
              
"Youcould reach it out into the environment and grab things, and basically use itas a tunable hook for stability," Walker said. "In some ways, this isinspired by various monkeys," which use their tails for the same purpose,he added.
“你可以伸展它到外面的环境中,并且抓取东西 ,基本上把它作为一个稳定的可调节的钩子 沃克说。“在某些方面,这是受到猴子的启发,“ 它(猴子)用尾巴达到同一目的 ,他补充说
                    
Lithe,flexible robots could also check the outside of the International Space Stationfor damage caused by micrometeoroid strikes, Walker said. They could serve as usefulgeneral-purpose tools aboard the orbiting lab as well, wielded by astronauts orby NASA's humanoid robot Robonaut 2, which was designed to help humancrewmembers perform menial tasks.
轻盈、灵活的机器人也可以检查ISS之外被微流星体撞击引起的损坏,沃克说。它们也可以作为有用的通用工具登上这个轨道实验室,由宇航员或NASA的人形机器人 - 宇航员2号所使用,它(2)的目的是帮助人类乘员执行琐碎的任务
               
"Theywould basically have a robot lasso, or a robot rope, that would be part oftheir toolkit that they could deploy in situations that called for it," Walker said.
“他们将基本上都有一个机器人套索 ,或一个机器人绳索 ,这将是他们工具包的一部分,它们可以在调用它的情况展开。“ 沃克说。
                  

Making progress
取得进步
                  
Walkerand his team started working seriously on tentacle robots about 15 years ago.They've made a lot of progress since then, building machines inspired byelephant trunks, climbing vines and octopus arms, among other structures foundin nature.
沃克和他的团队大约15年前开始认真致力于触须机器人的工作。从那时起,他们已经取得了很大的进步 ,受来自大象鼻子、攀爬藤蔓和章鱼胳臂、以及其他自然界中发现的特有结构的启发,(去)建造机械。
                  
Theoctopus-arm project, which ran from 2003 to 2007, received funding from the United States'Defense Advanced Research Projects Agency (DARPA) and involved researchers fromsix other institutions in addition to Clemson, Walker said.
章鱼臂项目 ,从2003年运行至2007 ,收到来自美国“国防高级研究计划局(DARPA)的资助,还有,除了克莱姆森的其他六个机构参与了研究,沃克说。
                     
The pneumaticallyactuated robot that came out of it,known as Octarm, could grab and stack cones of varying sizes, exploretunnel-like environments and manipulate objects it had never encountered beforewhile submerged in water, Walkersaid.
一个展示出来的气动机器人,被称为Octarm ,可以抓住和把大小不等的锥 堆叠 探索象隧道一样的环境 以及 在其淹没在水下之前 操纵它从来没有遇到过的 物体,沃克说。
              
Suchmachines are surprisingly inexpensive and easy to build, if the designers knowwhat they're doing. Octarm, for example, cost just a few thousand dollars intotal, Walkersaid.
这种机器是出乎意料的便宜,而且易于制造 ,如果设计师知道自己在做什么 Octarm ,例如 ,总成本仅仅几千元,沃克说。
                  
"Mechanically,these things are cheap and very versatile in what they cando," he said. But the trick is "to extract that performancefrom it. So there are questions of, How much do you need to model it? How muchdoes it need to know?"
“机械方面 ,这些东西很便宜,并且在他们可以做的事情上多才多艺,“ 他说。但诀窍是 “要获得来自它的能力。所以有一些问题的 你需要(有)多少去模仿它?需要知道多少做它?“
                 
While suchchallenges are keeping researchers like Walker busy, he thinks that tentaclerobots have a bright future — and this future is likely not too far off.
而这种挑战促使沃克这种研究人员忙于工作,他认为触手机器人有一个光明的未来  -  而这个未来很可能不会太遥远。
                     
"Thelearning curve has been significantly attacked, and I would say that we know anincredible amount more now than we did five years ago," Walker said, referring to the globalcommunity of tentacle robot researchers. "At the progress we're makingright now, I would be surprised if there aren't things that look intelligentand [are] intelligent in, say, a decade."
学习曲线已显著被攻下 ,我会说,我们现在更多的比我们五年前认识一个难以置信的,“ 沃克说 ,指的是触手机器人研究者的全球社会。 “在进步,我们正在做的,现在 ,我会感到惊讶,如果没有事情看起来聪明,[]智能化 ,说 ,十年的时间。“
  

FollowMike Wall on Twitter @michaeldwall and Google+. Follow us @Spacedotcom,Facebook or Google+. Originally published on Space.com.
(这是)依照Twitter@michaeldwallGoogle+的麦克·沃尔。按照我们@Spacedotcom FacebookGoogle+上。最初发表在Space.com上。
                       
EDITOR'SRECOMMENDATIONS
编者建议
Photos:Robonaut 2, NASA's Robot Butlerfor Astronauts
  照片:机器人宇航员2 NASA的宇航员机器人管家
                 
Quiz:Sci-Fi Vs. Real Technology
测验:科幻与真实技术比较
              
Biomimicry:7 Clever Technologies Inspired by Nature
仿生学:来自于大自然启发的7个聪明技术
                        

 楼主| hkhtg090201 发表于 2015-1-29 16:20 | 显示全部楼层
hkhtg090201 发表于 2014-9-1 06:24
ISS上的R2按上腿,年末开走
   http://www.floridatoday.com/story/tech/science/space/2014/08/30/sp ...

R2的‘腿’ 第一次加电,准备行走。
--------------------------------------------------------

Robonaut’s Legs Powered Up, Station Lowers Orbit
  Published by Klaus Schmidt on Thu Jan 29, 2015
    http://spacefellowship.com/news/art43087/robonaut-s-legs-powered-up-station-lowers-orbit.html

The Expedition 42 crew worked Wednesday with fruit flies, a humanoid robot and a Dragon spacecraft. Also, Europe’s Automated Transfer Vehicle-5 fired its engines for nearly five minutes, slightly lowering the station’s orbit to prepare for an upcoming ISS Progress 58 resupply mission.

Commander Barry Wilmore and Italian astronaut Samantha Cristoforetti packed gear inside the SpaceX Dragon private space freighter for retrieval on Earth. The Dragon will return to Earth on Feb. 10 when it will splashdown in the Pacific Ocean for recovery off the coast of Baja California. Cristoforetti later fed fruit flies for an experiment studying their immune system as a model for a crew member’s susceptibility to disease in space.

   Flight Engineer Terry Virts unpacked Robonaut in the Destiny then powered up the humanoid robot for a mobility test during the afternoon. Its legs received power for the first time Wednesday. Virts monitored the leg movements in conjunction with operators on the ground.


 楼主| hkhtg090201 发表于 2015-5-1 15:43 | 显示全部楼层
hkhtg090201 发表于 2014-8-17 20:37
ATV一5递送了ISS机器人加油任务第二演示阶段的第二部分硬件。第一部分硬件在2013年由HTV递送。

http://w ...


机器人加油实验-2 准备中...,先把实验硬件从JEM气闸舱送到外面去。

Robotic Refueling and More Today on Station
  Published by Klaus Schmidt on Thu Apr 30, 2015  via: NASA



http://spacefellowship.com/news/art44332/robotic-refueling-and-more-today-on-station.html


   Station astronauts continued preparing for the next round of robotic refueling demonstrations while conducting various biomedical experiments and checkouts.
  
  
Expedition 43 commander Terry Virts worked with ground teams to prepare the airlock in the Japanese Experiment Module and extend the slide table carrying the new Robotic Refueling Mission-2 (RRM-2) hardware. Robotics controllers on the ground then used the Canadarm2 robotic arm to install the new task boards that will be used for the experiment. The objective of RRM-2 is to develop new technologies, tools and techniques that could eventually give satellite owners resources to diagnose problems on orbit and keep certain spacecraft instruments performing longer in space.


zhh894217 发表于 2015-11-3 12:21 | 显示全部楼层
005SySbsjw1exnm3orj7uj30qo0zk45c.jpg
zhh894217 发表于 2015-11-3 17:04 | 显示全部楼层

机器人航天员“小天”
现实版“钢铁侠”

在科幻电影中,人类探索太空总少不了机器人这个帮手。在本届工博会上,长得像“钢铁侠”的机器人宇航员“小天”也揭开神秘面纱,未来在我国空间站、载人登月等重大工程中,机器人宇航员有望得以应用。

展台工作人员介绍,“小天”是“玉兔号”月球车的同门师弟,由中国航天科技集团公司八院805所研制,主要用来辅助或替代航天员开展在轨操作,未来可应用于空间站、载人登月等有人环境,辅助航天员扩大活动空间和工作空间,降低航天员出舱风险。

机器人航天员项目主管设计师韩亮亮介绍称,机器人是一个固定基座双臂机器人,每个手臂是7个自由度,左手用于一些专用操作的末端工具,右手配置了一个五指灵巧手,具有12自由度。

小天的双臂和手指非常灵活,一般人手能够完成的动作,小到抓取钢笔、光盘等日常操作,大到插拔旋拧、更换电连接器等工业操作,他都能够胜任。

小天与普通工业机器人的另一个较大区别,就是应对恶劣空间环境的能力。太空具有零重力、高真空、大温差、空间辐照环境等特征,一般工业机器人在此环境下功能丧失严重,无法有效辅助宇航员实现在轨操作。

https://mp.weixin.qq.com/s?__biz ... e=0#wechat_redirect
 楼主| hkhtg090201 发表于 2015-12-28 14:05 | 显示全部楼层
俄德两国首次实现含触觉感知的人形机器人太空遥操作(上)  

新闻发布时间:2015-12-22


  [本站2015年12月22日综合报道]  俄德两国航天机构于2009年开始“回路”(Kontur)系列实验,研发从载人航天器上遥控位于月球或火星等地外行星上机器人的“远端临场”(telepresent)技术,可在未来用于建设月球或火星基地。两国已在“回路”-1实验中完成了从地球控制在国际空间站上的机器人,并在“回路”-2中实现人类首次实现从太空遥控地面上的人形机器人,未来计划在“回路”-3中开展机器人集群控制实验。
  
  “回路”-2系列实验于2015年8月20日开始,共计20次,共有来自俄罗斯国家机器人学和技术控制学科学中心(RTC)和机器人与机电一体化研究所(IRM)的20名专家参与,双方联合研制的遥控系统于2015年7月23日,利用从拜科努尔航天发射场发射的“联盟”TMA-17M送达国际空间站。宇航员在“回路”-2实验初期通过进行简单的灭灯实验,了解操控系统的控制精度,未来还将遥控机器人在各种环境中移动(如沿崎岖的地形行进,随后打开门并走进房间)、越障、协同工作(两个机器人共同搬一根平衡木)。
  
  12月17日,俄罗斯宇航员谢尔盖·沃尔科夫(Sergey Volkov)在国际空间站上,通过人形机器人“太空贾斯廷”,与地面上德国宇航中心(DLR)的IRM主管完成“远端握手”(telehandshake)实验。因引入了“力反馈”技术,双方能够在握手时感受到压力与运动。
  
  DLR执行委员会主席帕斯卡尔·亨弗雷德(Pascale Ehrenfreund)强调,本次“回路”-2技术实验是俄德两国首次成功利用人形机器人,在地球轨道上的宇航员和地面上的人之间完成力反馈操作,标志着DLR在机器人学领域取得又一重大突破。在操作过程中,机器人操控者不仅依靠从显示器上看到的图像,还从操纵杆的触觉信息感受到机器人运动过程中接触的周围环境,可利用远处的机器人代替自己作业,获得如同本人亲自作业一般的临场感。 (中国航天系统科学与工程研究院  李金钊 魏雯 马婧)  


-------------------------------


俄德两国首次实现含触觉感知的人形机器人太空遥操作(下)  

新闻发布时间:2015-12-22


  [本站2015年12月22日综合报道]  宇航员可通过“回路”-2操纵杆控制“太空贾斯廷”的手臂并实时获得微弱的力反馈信息,甚至可以控制机器人手掌开合,抓取特定目标。
  
  数据传输时间延迟时太空远端临场应用的最大挑战之一。400千米的传输距离约产生30毫秒延迟。一个专门设计的控制概念,确保延迟不会积累不稳定行为,该行为可能使得系统失效。由于远端握手期间的力反馈实验进行得很顺利,科学家又成功地完成了另一项复杂的实验。
  
  当宇航员沃尔科夫遥控“太空贾斯廷”右臂的时候,位于圣彼得堡的RTC工作人员负责控制其左臂。RTC有一个与DLR实验室内完全相同的“回路”-2操纵杆。沃尔科夫和RTC工作人员同时控制“太空贾斯廷”,将球拾起并交给DLR研究人员手中。实验过程中,两个控制人员都能感受到机械臂抓取和移交小球时所受的触觉信息。
  
  远端握手和协作完成的小球移交实验,标志着“回路”-2系列实验取得突破进展。“回路”-2系列实验的目的是在ISS上试验并优化远端临场技术。目前,该技术演示已成功,IRM已准备好进行下一步工作。未来,将应用远端临场控制来运行多自由度的系统。这将使能在任何空间方向控制一个系统,为太空机器人远端临场开辟新领域;随后,宇航员将能够控制整个人形机器人,而不仅仅是“太空贾斯廷”的手臂。
  
  此外,据RTC副总设计师弗拉基米尔·扎博罗夫斯基称,俄宇航员还在“回路”-2实验中成功遥控了RTC实验室内的机器人“尤拉”,使其在专门设计建造的、带有障碍物的火星模拟场行进。随后,宇航员遥控机器人在可移动障碍物的场所中行进。最后,宇航员还利用地面人员控制的另一台机器人,从空间站控制“尤拉”在迷宫中行进。
  
  远端临场技术将对未来深空探测十分重要,宇航员能够在探测火星、月球或者其他天体时,不必离开太空站就可控制机器人执行精细的运载任务。此外,该技术还可使能地球上的控制人员执行卫星维护与修复工作。(中国航天系统科学与工程研究院  李金钊 魏雯 马婧)  

 楼主| hkhtg090201 发表于 2016-2-17 20:23 | 显示全部楼层
Dextre的演示为‘机器人辅助EVA’铺平道路
Dextre demo paving the way for robotic EVA assistance
February 11, 2016 by Chris Bergin
http://www.nasaspaceflight.com/2016/02/dextre-demo-robotic-eva-assistance/
 
 
 
       专用灵巧机械手(SPDM)已完成一系列的测试,旨在减少 在国际空间站(ISS)上涉及安装新电池时人类EVA的工作量 。这台引人注目的加拿大机器人 - 通常被称为”Dextre”  -  在日本货船HTV-6运送新电池到来之前 通过了(由)主总线切换装置(MBSU)演示的三天工作
The Special Purpose Dexterous Manipulator (SPDM) has completed a series of tests aimed at reducing the human EVA workload involved with the installation of new batteries on the International Space Station (ISS). The impressive Canadian robot – more commonly known as “Dextre” – worked through three days of Main Bus Switching Unit (MBSU) demonstrations ahead of the arrival of new batteries on the Japanese cargo ship HTV-6.
专用灵巧(机器人):
Dextre:
   Dextre是一台在ISS外的永久固定装置,随时准备转换工地,在那里可与外部的维护任务一起工作、移除和更换 灵巧可兼容 轨道更换单元(ORUs)和 服务于科学有效载荷。
Dextre is a permanent fixture on the outside of the ISS, ready to be translated to worksites where it can be tasked with external maintenance tasks, the removal and replacement of dexterous compatible Orbit Replaceable Units (ORUs) and the servicing of scientific payloads.
 
 
… PS 下面:Dextre 机器人 历史只作提示性翻译
 
      SPDM由麦克唐纳 Dettwiler及其伙伴 设计和制造 ,(MDA),并由加拿大宇航局(CSA)提供资金。
The SPDM was designed and built by MacDonald Dettwiler and Associates, (MDA), and financed by the Canadian Space Agency (CSA).
    机器人2008年(STS-123 搭乘 航天奋进号飞机  飞到太空  …  …
... ...
… …
 
     尽管有一些磨合问题,机器人在接下来的几个月的检出进展顺利,最终使该机器人2010年(PS:12月)进入业务状态
Despite a few teething problems, checkouts of the robot proceeded well over the coming months, eventually allowing the robot to enter into operational status in 2010.
然而,Dextre初试身手(开场操作)表明有些麻烦,.... …
   However, Dextre’s opening operations proved to be troublesome, although the challenges provided a number of important lessons that have fed into the numerous successes that have followed over recent years.
   Dextre第一次重大成功的到来是在HTV-2任务期间,与它的太空站遥控操纵系统(SSRMS)同胞- 或者叫加拿大臂2 - 协同工作。... ...
The first major success for Dextre came during the HTV-2 mission, working in tandem with its compatriot the Space Station Remote Manipulator System (SSRMS) – or Canadarm2. The duo worked on removing payloads hosted in the Japanese vehicle’s Exposed Pallet.
   2011末,Dextre执行了一套机器人马拉松任务,依次... …执行推进未来技术的测试
Later in 2011, Dextre took on a marathon set of robotic tasks, in turn feeding into the approval to conduct tests on future technology advances.
   在2012年开始,第一次联袂使用Dextre与NASA机器人的加油任务(RRM)测试... 标志着首次...卫星服务 ...尝试。
Beginning in 2012, the first use of Dextre with NASA’s Robotic Refuelling Mission (RRM) tests marked the first ever attempt at satellite servicing demo tasks to be performed at the ISS.
      关于RRM,这是由卫星服务能力办公室(SSCO)开发的一个ISS载荷,在航天飞机亚特兰蒂斯执行STS-135时发射。
The RRM is an ISS payload developed by the Satellite Servicing Capabilities Office (SSCO) at NASA’s Goddard Space Flight Center (GSFC), launched with Shuttle Atlantis during STS-135.
       许多操作被贯彻实施,在2013年标志着初始(阶段)的测试系列圆满结束
Numerous operations were carried out, marked by the successful conclusion of the initial test series in 2013.
   Dextre还多次与SpaceX龙飞船运载器一起工作 ,... ...
Dextre has also worked with a number of SpaceX Dragon vehicles, following an initial meeting during the commercial spacecraft’s debut mission to the Station – testing out clearances and camera views ahead of the future payload removal role involving payload items in Dragon’s trunk section.
  第一次 从龙飞船躯体中移除 硬件是  CRS-2 / SPX-2任务期间。
   The first hardware to be removed from Dragon’s Trunk came during the CRS-2/SpX-2 mission.
    然而,这仅仅涉及SSRMS,执行移除2个...HRSGFs...的工作 - 这实质上….
However, this only involved the SSRMS, tasked with the removal of two Heat Rejection Subsystem Grapple Fixtures (HRSGFs) – which are essentially bars each featuring two Flight Releasable Grapple Fixtures (FRGFs).
       龙飞船躯干和Dextre之间的第一次有效载荷转移任务 CRS-3 / SPX 3期间到来,CRS-5 / SPX-5任务中再次重复了(这样的)一次操作。
The first payload removal task between Dextre and Dragon’s trunk came during CRS-3/SpX-3, an operation that was repeated again during the CRS-5/SpX-5 mission.
    在ISS上Dextre还提供了很多额外的作用,如(对)ISS舱段以及它的机器人同胞的 视觉检查。
Dextre has also provided many additional roles on the Station, such as visual inspections of the ISS modules and its robotic friends.
(PS: 下面开始叙述这3天的演示情况)
    但是,作为一种对基于EVA维护的支持,这将对该太空站的业务提供重要的推动作用
However, it’s the role of supporting EVA-based maintenance that will provide a major boost to Station operations.
    最近的测试 - 被称为”主总线切换单元(MBSU)演示”  -  旨在确认(为)机器人搬运 电池而 设计的轨道替换单元(ORUs(的有效性) ,这些先于HTV-6 交付新的ISS电池之前。
The recent test – known as the “Main Bus Switching Unit (MBSU) Demonstration” – was designed to validate the robotic transfer of battery style Orbital Replacement Units (ORUs) prior to the delivery of new ISS batteries on HTV-6.
      我们的目标是让 计划制定者们 减少安装电池所需的EVA次数, 从六次左右减少到只有两次太空行走
The goal is to allow planners to reduce the number of EVAs required to install the batteries from around six to just two spacewalks.
    为期三天测试的第一次任务, 涉及地面控制人员操纵Dextre,把 备用MBSU飞行释放连接机构(FRAM) 从专使后勤搬运器(ELC)-2  移动到 增强ORU临时平台(EOTP)上
The first task over the three-day test involved ground controllers tasking Dextre to move the spare MBSU Flight Releasable Attachment Mechanism (FRAM) from Express Logistics Carrier (ELC)-2 to the Enhanced ORU Temporary Platform (EOTP).
    本次演示是首次联袂使用 SPDM ORU 工具调换装置OTCM)和 机器人分支工具ROST
This demonstration was to be the first time the SPDM ORU Tool Changeout Mechanism (OTCM) and the Robotic Offset Tool (ROST) were used together.
        OTCMs作为Dextre2条手臂的终端,其中包括(能)抓住物体的下巴(狭窄入口),一个可伸缩的套筒驱动装置,一个摄像头和灯光,和一个脐带连接器,以提供和接收  往返于一个被夹着物体的    功率、数据和视频。
   Both of Dextre’s arms are terminated with OTCMs, which include “jaws” to grasp objects, a retractable socket drive, a camera and light, and an umbilical connector to provide and receive power, data and video to and from a gripped object.
     这些OTCMs还包括力/力矩传感器(FMS)技术,给予臂膀一种触觉
The OTCMs also include Force/Moment Sensor (FMS) technology, giving the arms a “sense of touch”.
   但是,该里程碑事件的第一天测试遭受了一点磨合问题的考验。
However, the milestone event on day one of the test suffered from a few teething problems.
      ”由于与SPDM OTCM抓取ROST有关的一个问题,该ROST目标不得不推迟 OTCM下巴 到达 距离所需的抓取位置 0.1mm左右。几次反复定位并重新抓取尝试 得到同样的结果” SPDM任务L2中的概述指出。
The ROST objective had to be deferred due to an issue with the SPDM OTCM grasping the ROST. The OTCM jaws came to ~0.1 mm from reaching the required grapple position. Several reposition and re-grasp attempts were made with the same result,” noted an L2 overview of the SPDM tasks.
       “该团队决定删除其余的ROST活动 并使用OTCM 继续 MBSU的准备活动。在HTV-6期间(2016年末),ROST能力将需要一些计划了的电池操作 该团队正在调查该问题。在未来几天 可能需要重新规划 一次ROST 演示。
The team decided to delete the rest of the ROST activity and continue with MBSU prep activities using the OTCM. The ROST capability will be needed for some of the planned Battery operations during HTV-6 (late in 2016). The team is investigating the issue. A ROST demonstration will likely need to be re-planned for a future date.”
    经由使用OTCM, MBSU上的 次要螺栓 正常 松动 通过它解开 。该SPDM然后松开并在第二天操作之前转到一个安全隔夜
The secondary bolt was unfastened on the MBSU nominally by loosening it via the use of the OTCM. The SPDM was then un-grappled and moved to a safe overnight ahead of the second day of operations.
   第二天的任务,涉及从FRAM结构迁移MBSU ,并在 MBSU重新回到FRAM之前,临时储存MBSU在EOTP侧3。
The second day’s tasks involved the removal of the MBSU from the FRAM structure and temporarily stowing the MBSU on EOTP side 3 before returning the MBSU back to the FRAM.
        当机动到EOTP时, 提醒在过程预期 参照系(FOR)和 实际FOR之间(出现了)差异 ROBO(控制人员团队)能够建立一个新的FOR 并完成计划了的行动。
While maneuvering to the EOTP, a difference was noticed between the expected Frame Of Reference (FOR) in the procedure and the actual FOR. ROBO (controller team) was able to build a new FOR and finish the planned operations.
   操作期间,当解开螺栓后 试图从EOTP后撤MBSU时, 更多的挑战显现出来,当时 Dextre并没有最初的移动 和 负载开始建立
During the operations, more challenges were noted when attempting to back the MBSU away from the EOTP after unfastening the bolt, as Dextre did not initially move and loads started to build up.
   “This was potentially due to the MBSU hanging up on the soft dock detents. Prior to timeout of the maneuver, the SPDM overcame the binding force and released. Forces applied were all within limits. When it released, SPDM motion stopped short of the intended back away position,” added the L2 notes.
   这可能由于MBSU在软停靠制动器悬了起来。 在机动工间休息之前,在SPDM克服的结合力并释放。作用力都在极限范围内。当它被释放,SPDM运动  预期 戛然而止   回撤位置,“ L2的注解这样补充。
需要一次追加的机动去结束这次退避三舍的机动。这两个问题正在调查之中“。
An additional maneuver was required to finish the back away maneuver. Both of these issues are being investigated.”
         无论如何,当MBSUFRAM被移回到专运后勤运送器(ELC2 时,这些操作成功结束,没有进一步的问题 报告。
However, the operations were successfully concluded when the MBSU and FRAM were moved back to Express Logistics Carrier (ELC) 2 with no further issues reported.
   整体测试被认为是成功的,技术挑战帮助了解基础,先于一些(现在)不需要的操作,直到今年末HTV-6与新电池到达时。
   The overall test was deemed successful, with the technical challenges aiding the knowledge base ahead of operations that won’t be required until HTV-6 arrives with the new batteries later this year.
    未来 在HTV-6操作之前 需要进行的附加测试, 可能被插入到日程表中,指定的这些操作地面执行,不需要ISS机组人员的参与
A future requirement to conduct additional tests ahead of HTV-6 operations could be inserted into the schedule, given the operations are conducted from the ground and do not require the involvement of the ISS crewmembers.
   作为过渡,Dextre可期待参与即将到来的SpaceX龙飞船任务,如同加拿大机器人利用其在这个轨道前哨外侧的有利位置 一样,继续提供其重要作用。
For the interim, Dextre can look forward to being involved with upcoming SpaceX Dragon missions, as the Canadian robot continues to provide an important role from its vantage point on the outside of the orbital outpost.
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|小黑屋|航空航天港 ( 豫ICP备12024513号-1 )

GMT+8, 2019-11-21 09:49 , Processed in 1.528803 second(s), 21 queries , Gzip On.

技术支持:飞腾网络

© 2001-2018

豫公网安备 41019702002513号

快速回复 返回顶部 返回列表