航空航天港

 找回密码
 注册会员

QQ登录

只需一步,快速开始

返回列表
楼主: hkhtg090201
收起左侧

[科普] 世界航天自动化(空间机器人robot等)发展专题:ISS完成世界首次卫星加油演示

[复制链接]
 楼主| hkhtg090201 发表于 2012-6-27 23:02 | 显示全部楼层

ISSDextreRRM完成第二轮联合行动 – CDRA痊愈
ISS: Dextre and RRM complete second round of joint ops – CDRA recovered
June 24th, 2012 by Pete Harding  
    译者按:本轮RRM操作主要还是进行 燃料加注前的准备工作---也即是:CVP GFR冷却剂阀门面版? 气体装置移除?)任务
                        
                  
Aboard the International Space Station (ISS) this past week, Canada’s Dextre robot and NASA’s Robotic Refuelling Mission (RRM) experiment have completed their second period of joint operations designed to demonstrate the technologies for robotic satellite servicing and refuelling in space. Meanwhile, the station’s US Lab-based Carbon Dioxide Removal Assembly (CDRA) was successfully re-activated following a failure the previous week.
过去的一周在ISS上,加拿大Dextre机器人和NASA(RRM)的机器人加油任务实验已经完成了他们的联合行动的第二阶段,(这个实验)设计为一个 在太空的机器人卫星维修和加油技术演示。与此同时,ISS的美国实验室为基础的二氧化碳去除装置(CDRA)在前一周失败后成功重新激活(痊愈)
     
SPDM/RRM operations:SPDM /RRM行动:
Following on from the Gas Fittings Removal (GFR) Part One tasks performed in March this year – which successfully demonstrated the ability to sever a fuelling valve’s lock wire in space – the latest operations saw Canada’s Special Purpose Dextrous Manipulator (SPDM), more commonly known as “Dextre”, and the NASA Goddard Space Flight Center Satellite Servicing Capabilities Office (GSFC SSCO) developed RRM team up for the second time to complete Part Two of the GFR tasks.
继在今年3月执行的气体装置移除(GFR)的任务部分, - (哪次任务)成功演示了在太空去切断一个‘燃料阀锁线’的能力 - 最新的操作(可以)看到加拿大的特殊用途的灵巧机械臂(SPDM),通常称为“Dextre”,NASA戈达德太空飞行中心卫星服务能力办公室(SSCO戈达德航天飞行中心)开发RRM团队,完成GFR任务的第二部分
The two-part GFR tasks centered around the Coolant Valve Panel (CVP) on the RRM module, which is one of many panels and task boards on RRM which contains mock-ups of many of the different types of valves commonly found on most satellites.
这第二部分GFR任务中心围绕 RRM模型的 冷却剂阀门面版(CVP,(这个面版)是 许多面版 以及RRM的任务板,其中包含模拟的阀门上 常见的大多数卫星的许多不同类型的UPS之一。
   
In addition to the valve mock-up panels, the RRM also features four tools that attach to the SPDM’s ORU Tool Changeout Mechanism (OTCM) “grippers” which terminate both of its two arms. Designed to perform multiple satellite servicing/refuelling functions, these four tools are the Safety Cap Tool (SCT), Wire Cutter Tool (WCT), EVR Nozzle Tool (ENT), and Multi-Function Tool (MFT).
除了这个仿制的板阀,RRM还设有四个工具,连接到SPDM的 ORU工具改出机制(OTCM)“夹子”,在它的两只胳膊终端。旨在执行多种卫星服务/加油功能,这四个工具 是 安全帽工具(SCT),线切割工具(WCT)的,EVR喷头工具(ENT),和多功能工具(MFT)。
   
The MFT is designed to be an all-purpose tool that performs specific functions via attaching to four adapter tools – the T-Valve Adapter (TVA), Tertiary Cap Adapter (TCA), Ambient Cap Adapter (ACA), and Plug Manipulator Adapter (PMA) – in the same way that different tips can be attached to a screwdriver. Thus, by having one tool that performs four functions, the MFT is “designed to be compact and multipurpose so that it can deliver smart and cost-effective servicing options in space”.
这个MFT是设计为一种通用的工具,可以执行特定的功能,通过附带四个适配器工具 - T型阀门适配器(TVA的),三通?帽适配器(TCA),环境适配器(ACA),插头操纵器适配器​​PMA - 以同样的不同的末端的方式可以连接到一个螺丝刀。从而,有一个工具,可以执行四个功能,MFT是“设计紧凑,多用途的,所以在太空它可以提供智能和具有成本效益的服务选项”。
   
It was the MFT and its four adapters that were used for the GFR Part Two tasks on the CVP.
一个MFT和它的四个适配器被用于 CVP上的GFR第二任务部分。
   
With the SPDM positioned near RRM on the end of the Space Station Remote Manipulator System (SSRMS) Canadarm2, which was in turn positioned on the Mobile Base System (MBS), the joint SPDM/RRM operations, controlled entirely from the ground with no ISS crew involvement, got underway on 20 June.
随着 太空站遥控操纵系统(SSRMS)“加拿大二号” 末端的SPDM  定位在RRM的附近,它(SSRMS)依次放置在移动基站系统(MBS)上,该联合SPDM /RRM操作行动,受地面完全控制,没有ISS乘员的参与,在6月20日实施任务。
   
The first order of business, performed overnight from 19-20 June, was for the SPDM Arm 1 to grasp hold of the MFT (Multi-Function Tool) and remove it from its stowage bay on RRM.
业务的第一个命令单,从619-20日进行了一个通宵,SPDM1抓住MFB(多功能工具)的把柄,并从其装载托架上的RRM移除。
   
Following a repositioning of the SSRMS/SPDM, the MFT then in turn grasped its T-Valve Adapter (TVA) tool (a task which was successfully completed on the second attempt) and removed it from its MFT Adapter Receptacle (MAR) on RRM  – making for a long “chain of progressively smaller robots linked together, starting with the MBS, to which the SSRMS was attached, to which the SPDM was attached, to which the MFT was attached, to which finally the TVA was attached.
经过重新定位的SSRMS / SPDM,MFT然后依次抓住它的T-阀门适配器(TVA)工具(这是在第二次尝试成功完成的任务),并移除其MFT插座适配器(MAR)在RRM山峰 -使长“链” 逐步较小的机器人连接在一起,与MBS开始,什么SSRMS,什么SPDM,其中,重视的MFT,最终的TVA的重视。
   
The MFT with TVA attached then proceeded to begin actual valve removal demo operations, with the TVA attaching to a mock T-Valve, followed by unscrewing and removing it from the CVP.
连接着TVAMFT,接着开始实际的阀门拆卸操作演示随着TVA连接到一个模拟的T型阀,随后松开,从CVP移走。
   
The TVA, with removed T-Valve attached, were then stowed in a receptacle on the RRM on the second attempt, thus completing the T-Valve removal operations. Closing out the first day of RRM operations, the MFT then grasped the Ambient Cap Adaptor (ACA) and removed it from its stowage receptacle on RRM.
TVA,随同附着的被移除的T型阀,然后存放在RRM一个插座上在第二次尝试中,从而完成了T型阀的拆卸操作。结束RRM行动的第一天,MFT然后抓住环境适配器(ACA)并且从RRM装载容器中移除。
Day two of operations, conducted overnight from 20-21 June, began with the ACA, grasped by the MFT the previous day, attaching to mock-up ambient cap #2 on the RRM – a piece of hardware that would cover important fluid and gas lines on a real satellite – followed by the ambient cap being unscrewed from the RRM, and then being stowed, along with the still attached ACA, in a receptacle on RRM, thus demonstrating ambient cap removal capabilities.
第2天的操作,进行了一整夜从6月20到21日,随ACA一起开始,(ACA)由MFT在前一天抓住,连接到模拟环境帽上的RRM#2 -一个硬件,一个真正的卫星将覆盖重要的液体和气体线 -其次是从环境RRM的拧开瓶盖,然后被存放,安静ACA的连接非常久远,到RRM上的插座,因而展示环境帽去除能力。
   
Day two’s operations were closed out with the MFT, now free of the ACA, grasping the Plug Manipulator Adaptor (PMA) in preparation for day three’s activities.
MFT第二天的行动结束,现在摆脱了ACA,在第三天的活动做准备抓插件操纵转接器(PMA)。
  
The third and final day of joint SPDM/RRM operations, conducted from 21-22 June, consisted of the MFT using the PMA to raise a plug beneath the ambient cap removed the previous day, including using a plunger inside the PMA to simulate breaking the seal on a fuel tank.
SPDM /RRM联合行动的第三天和最后一天,从6月21到22日进行,包括MFT的使用PMA的提高下一个插件,去掉了前一天的环境帽,包括内部使用的PMA模拟打破了油箱的密封柱塞。
   
According to a set of RRM ops summary notes acquired by L2 – L2 Link, following plug manipulation tasks, “at the RRM team’s request, the SPDM Arm 1 was maneuvered back over to the AC2 (Ambient Cap 2) connection so that the RRM team could verify that the plug had indeed been raised”.
据一套RRM的操作行动概要 L2收购 -二级链接,以下插件操作任务,“在RRM团队的要求,SPDM1机动到的AC2(环境第2章)连接,所以可以验证RRM团队,插件确实已经提起了。“
   
With the plug tasks verified, the MFT stowed the PMA back in its receptacle on RRM, following which the MFT went onto grasp its fourth and final adaptor – the Tertiary Cap Adaptor (TCA). Once the TCA was removed from its receptacle on RRM, touch and push tests were performed between the TCA and the Tertiary Cap Receptacle (TCR), which included pushing the TCA over a tertiary cap. At completion of this task, all GFR CVP tasks were complete.
随着这个插件任务被验证,MFT的PMA被回存其放在RRM插座,接着是MFT抓住它的第四个也是最后一个适配器 – 三帽适配器(TCA)。一旦移除TCA从其RRM的插座上,TCA和第三插座(TCR)之间的接触和推进(touch and push tests)测试即被执行,其中包括TCA推进超过上限。在完成这个任务,所有CVP GFR冷却剂阀门面版 气体装置移除)任务完成
                     
The SPDM then stowed the MFT – with TCA still attached – back into its tool bay on the RRM, with the TCA being left attached to the MFT as a get-ahead for the RRM refuelling demo later this summer, which will require removal of a tertiary cap by the MFT/TCA combo.
“SPDM然后存放MFT -悄悄地附在用TCA -放回其托架上的RRM工具,与TCA为从左作为一个提前加油演示的RRM在今年夏天晚些时候的MFT,这将需要一个由大专帽的MFT / TCA的组合去除。
   
As a final task, SPDM Arm 1 grasped another tool – the EVR Nozzle Tool (ENT) – and then proceeded to check out the ENT’s cameras via power and video supplied through the SPDM, also in preparation for the RRM refuelling tasks. The ENT stayed secured inside its tool stowage bay throughout this checkout, and at successful completion, the SPDM Arm 1 ungrasped the ENT, which concluded the joint SPDM/RRM ops.
作为最后一个任务,SPDM手臂抓住另一个工具 - EVR喷嘴工具(ENT) -然后 通过 SPDM提供的电源和视频支持 对ENT的摄像机进行检查,也在准备RRM的加油任务。贯穿这个校验(过程),ENT被安全停放在他的工具隔舱里面,一直到成功完成,SPDM臂1 松开ENT,结束联合SPDM /RRM的操作行动
   
The SSRMS/SPDM were then manouvered to an overnight park position, where they will remain until the week of 25-29 June, when the SSRMS will stow the SPDM on the MBS Power & Data Grapple Fixture-2 (PDGF-2), whereupon the SSRMS will be moved to the Node 2 PDGF in preparation for capturing Japan’s HTV-3 spacecraft on 27 July.
SSRMS / SPDM然后被机动到一个 整夜停泊的位置,他们将在那里逗留至6月25-29日的一周,SSRMS将积载按揭证券的电源和数据抓取夹具-2PDGF--2)的SPDM,其中,SSRMS将准备移动到节点2的PDGF,捕捉 7月27日的日本HTV-3航天器。
   
The next set of SPDM/RRM ops will be their biggest task yet – the actual demonstration of a satellite refuelling in space, using a mock fuel as opposed to a real fuel. According to GSFC SSCO employee and RRM project engineer Ed Rezac, these operations are scheduled for this August.
下一个SPDM /RRM行动,将是他们最大的任务 -实际演示太空卫星加油 ,使用一个模拟的燃料,而不是一个真正的燃料。据戈达德航天飞行中心SSCO雇员和RRM项目工程师埃德Rezac,这些行动计划为今年八月
   
Although RRM has been in space for less than one year, the results of the experiment are already starting to bear fruit, with a GSFC SSCO presentation from the Second International Workshop on On-Orbit Satellite Servicing, held on May 30 this year, noting that “RRM operations have been extremely successful to date.
虽然RRM的在太空还没有一年,实验结果已开始结出硕果,戈达德航天飞行中心与从第二届国际SSCO研讨会上演示在轨卫星服务,今年05月30日举行,并指出,“到现在为止RRM的业务已经非常成功。
   
The SSCO at NASA/GSFC is confident that the robotic technologies that exist today are mature enough to effectively service spacecraft robotically in Low Earth Orbit and beyond“.
“NASA /GSFC 的SSCO深信,今天存在的机器人技术已经成熟到足以有效地服务航天器机器人在低地球轨道和更远”。
          
Lab CDRA failure and recovery: 实验室CDRA故障和恢复:
                  
Another item of interest on the ISS this past week was the failure of the US Lab-based Carbon Dioxide Removal Assembly (CDRA), as outlined on L2 ISS Status notes – L2 Link.
另一个令人感兴趣在上ISS的项目是,过去的这个星期美国实验室为基地的二氧化碳去除装配(CDRA)失败, … …
   
As its name suggests, the CDRA is used to keep the ISS atmosphere scrubbed of carbon dioxide (CO2), and thus is a vital part of the ISS Environmental Control & Life Support System (ECLSS).
顾名思义,CDRA用来保持ISS大气 的二氧化碳(CO2)净化,因而是一个ISS环境控制与生命的支持系统(ECLSS)的重要组成部分。
   
其他主题 . ….

 楼主| hkhtg090201 发表于 2012-9-4 18:21 | 显示全部楼层
DARPA利用SPHERES研究如何捕获退役卫星  
  
新闻发布时间:2012-09-04
  

  [据法国defense-aerospace网站2012年8月29日报道]  美国国防预先研究计划局(DARPA)正在确定捕获卫星所需的步骤。
  
   在实施大型计划前,DARPA开始了一项小型计划。参加Zero机器人自主太空捕获挑战赛的三支团队设计并演示了操控国际太空站上“同步位置保持、连通与再定向试验卫星”(SPHERES)的运算法则。这些卫星呈球形,可编程。
   
  2012年6月22日,在站上测试了他们的运算法则。这套运算法则运用到了三个场景中。SPHERES卫星模拟一颗活的航天器,接近在太空中翻滚穿梭的目标。每一场景中,都至少有一个团队能够接近这个翻滚的目标,并且与设定的捕获区域保持同步。
  
  现在DARPA通过“凤凰”计划扩展了试验规模,DARPA还将通过其他努力继续开发这项技术。DARPA项目经理表示,为Zero机器人挑战赛开发的控制程序必定有益于“凤凰”计划,有助于降低未来太空中星对星复杂接口的风险与成本,降低实施未来太空操作与任务的准入门槛。
     
  下一次Zero机器人竞赛定于2012年9月8日举行,高中生将有机会在SPHERES上测试自己的设计。(中国航天系统科学与工程研究院   许红英)

 楼主| hkhtg090201 发表于 2012-9-5 18:10 | 显示全部楼层
  
Altius LARC 签署可收纳式简洁机械手 SAA开发合同
Altius signs SAA with LaRC for Compactly Stowable Manipulator development
September 4th, 2012 by Chris Bergin  
        
A Space Act Agreement (SAA) has been announced between Altius Space Machines and NASA’s Langely Research Center (LaRC) to develop concepts for a new series of compactly-stowable, long-reach spacecraft robotic manipulator. The agreement will allow for Altius and NASA to jointly develop a new and novel Compactly Stowable Manipulator (CSM) system.
Altius空间机械公司和NASA Langely研究中心(LARC)公布了 一个太空行动协议(SAA) ,去(共同)开发一系列新的简洁细密的可收起的 长伸展的 航天机器人 概念。该协议将允许Altius NASA,去联合开发新的和新颖紧凑的可收起的机器人系统(CSM)。
     
Altius Space Machines:Altius空间机械公司:
Altius Space Machines is a space technology company, based in Louisville, Colorado, founded with the goal of reducing the barriers to space commerce. The company has already hit the ground running, wining first place in the 2011 NewSpace Business Plan Competition in Silicon Valley.
Altius空间机机械 一个太空技术公司,总部设在美国科罗拉多州路易斯维尔,成立的目标,是减少商业太空障碍。该公司已经旗开得胜,2011年新时讯在硅谷的创业计划大赛殊荣的首位。
     
Altius is known in the space community for it work in developing rendezvous and docking solutions using its Sticky Boom non-cooperative capture technology, for space stations and propellant depots, manned spaceflight, satellite servicing, and other applications.
对于空间站和推进剂仓库,载人航天,卫星服务,和其他应用计划中,使用粘性臂非合作捕捉技术开发交会对接解决方案上,Altius在航天界是有名的
     
The company recently announced it had signed a contract with DARPA to provide engineering services as part of the DARPA Phoenix Program.
该公司最近宣布,它已与DARPA签署了一项 合同,为DARPA凤凰计划的一部分提供工程服务。
     
   
That contract calls for Altius to develop and integrate a storable tubular arm (STEM) for use as a platform for situational awareness cameras and lights, and as a tool to reduce unwanted vibrations on parts of the target spacecraft caused during the component removal and repurposing operation.
该合同要求Altius,开发和集成了一个耐存储管状臂(STEM用于作为一个态势感知摄像机和灯光的平台,作为一种工具,以减少不必要的 在目标航天器的部件元件拆卸和再利用的操作过程中造成的 振动 。
     
The SAA with NASA LaRC relates to the development of concepts for compactly-stowable, long-reach spacecraft robotic manipulators, or robotic arms as they are commonly known.
该NASA的LaRC的SAA涉及简洁紧密可收起的长距离航天机械手概念的开发,或者它们普遍俗称的是机器人手臂
     
--------------next: ShuttlISS机械臂老生常谈,略------------------
….. …. ….
Due to the growing size – and smaller clearances – of the Station and the modules riding uphill, NASA managers did evaluate a smaller RMS known as the “Miniboom”. However, that was cancelled in favor of an additional OBSS.
由于规模的不断扩大 - 和更小的间隙 – 该站和模块不断增大,NASA管理者评估了一个较小的RMS被称为“Miniboom小吊竿”。但是,在支持一个额外的OBSS被取消了。
      
Now, a new generation of booms are being developed by Altius, with the non-reimbursable Space Act Agreement (SAA) with NASA LaRC specific to the Compactly Stowable Manipulator (CSM).
现在,新一代的悬臂杆正在由Altius开发,随着该 非偿还的与 NASA LARC具体的紧的可收纳式操纵器(CSM)的太空行动协议(SAA)。
   
As the name suggests, the CSM will have a very small packaging volume, yet be capable of highly-dexterous, long-reach operations,” noted Altius in a media release on Tuesday.
“正如它的名字所暗示的,CSM将有一个非常小的包装体积,也有高度灵巧的能力,长距离操作“ Altius上周二在一个媒体发布的消息指出。
     
When combined with a non-cooperative payload capture technology, the CSM would also enable satellite servicing, small-package delivery/return, and rendezvous/capture of nanosat-scale free flyers or sample return canisters.”
“当结合一个非合作的有效载荷捕获技术时,CSM也使1.卫星服务,2.小包装递交/回收, 3. 和纳卫星尺寸的交会/捕捉自由飞行 4. 或采样返回罐 成为可能。
     
Satellite servicing has already begun testing via NASA’s Robotic Refuelling Mission (RRM) experiments – involving Dextre – on the ISS. And while no discussions with the ISS program office have taken place yet, Altius believes that their technology has the potential to add important new capabilities to the Station.
卫星服务已经通过 NASA的机器人加油(RRM)实验开始测试 - 涉及Dextre  - 在ISS上。虽然还没有讨论与ISS项目办公​​室已经发生Altius认为,他们的技术有可能使空间站增加重要的新功能。
        
Research performed at orbital facilities such as the International Space Station (ISS) would be dramatically more agile and competitive if there were a means for providing small-package payload delivery and sample return on a just-in-time basis,” the company added.
“在轨道设施如ISS上进行研究,将是显着的灵活性和竞争力,如果有一个手段,一个刚刚在时间的基础上提供 小封装的有效载荷交付和样本返回” 该公司补充说。
         
A long-reach manipulator system, such as the system that will be investigated under this SAA, would be capable of capturing or releasing small vehicles (both cooperatively and non-cooperatively) at a safe distance from ISS. As a result, these small vehicles would not be required to station-keep relative to ISS, enabling them to deliver and return payloads safely and affordably by providing just-in-time payload transport services.”
“一个长伸展的机械手系统,
如,将根据本SAA调查系统,将能够在一个安全的距离ISS获取或释放的小型运载器(包括合作和非合作)。其结果是,这些小的运载器将不会被要求站保持相对ISS,让他们提供返回的有效载荷安全,经济提供刚刚在有效载荷的运输服务。“
        
CSM is a multi-talented technology, that also addresses the needs of future spacecraft, vehicles that are currently without defined plans for RMS capabilities that were enjoyed by spacecraft such as the Space Shuttle.
CSM 是一个多才多艺的技术,它也将致力于解决未来的航天器的需求,这些运载器目前还没有计划享有RMS的能力,如航天飞机。
     
Commercial crew and cargo transportation vehicles and NASA exploration vehicles, such as the Orion Multi-Purpose Crew Vehicle (MPCV), would accrue significant benefits if a robotic arm with performance capabilities similar to the Shuttle Remote Manipulator System (SRMS), but having much higher packaging efficiency, could be developed to fit on such vehicles,” added the Altius release.
“商业乘员和货物运输运载器以及 NASA的 探险运载器,如猎户座多用途载人飞船(MPCV),如果有一个性能类似航天飞机遥控器系统(SRMS)的机械臂,但具有高得多的包装效率,将累积显着的好处,可以开发以适合这类运载器“Altius补充的发布说。
               
Such an extendable/retractable RMS-class manipulator would enable inspection and repair of the vehicle windward and backshell TPS on missions to destinations other than the ISS and would additionally assist in EVA activities.”
这样一个可扩展/可伸缩的RMS类型的机械手,使检查和维修运载器迎风和后壳的TPS,任务到ISS地以外的目的地,还将协助EVA活动。”
     
Space manipulator development is performed at the Langley Research Center for the Game Changing Division of the NASA Office of Chief Technologist under the Human Robotics Systems Project. With Altius now onboard, the parties will benefit from the commercial requirements and systems engineering input provided by Altius, which will link very long-reach tendon-actuated manipulator technology development to commercial space missions.
间机械臂开发的兰利研究中心进行改变游戏规则Di的愿景  NASA办公室的首席技术专家根据人类的机器人系统项目。现在有了Altius船上,双方将受益于商业需求和系统的工程提供Altius的输入,将连接很长的达到肌腱驱动的机械手技术开发商业太空任务
            
Altius claims these new mission concepts and the technology developed under this SAA have the potential to open up completely new lines of commercial-space operations in payload handling, servicing, repair, and assembly.
Altius声称这些新任务概念和技术开发,在SAA有可能完全开辟新的商业太空间航线 有效载荷处理,服务,修复,和装配。
     
  
Together, Altius and NASA Langley Research Center will further develop and refine the mission requirements, concepts, and technologies that will make these new and valuable commercial payload delivery/return missions viable.”
“共同的,Altius NASA兰利研究中心将进一步开发和完善的任务要求,概念,和技术,这将使这些新的和有价值的商业有效载荷交付/返回任务成为可行。“

 楼主| hkhtg090201 发表于 2012-9-18 13:20 | 显示全部楼层
动态(1)
     
德国Astrium公司将建造机器人服务航天器

新闻发布时间:2012-09-17

  [据美国spacenews网站2012年9月14日报道]  按照一份与德国宇航中心签署的合同,德国Astrium GmbH公司将设计一套机器人系统,执行在轨卫星的维修、燃料加注、处理,并实施低地球轨道内的其他任务。
  
  此项合同在柏林ILA航空展上签署,为期一年,价值1900万美元。德国腓特烈港的Astrium卫星公司和德国不莱梅的Astrium 航天运输公司将领导此项工作,分包商包括德国宇航中心的奥伯法芬霍芬太空操作、机器人,以及机械电子分部。
  
  过去两年,德国宇航中心一直在权衡是否投资于Deos运行卫星服务系统。欧空局也曾考虑过类似的投资,但未能付诸实现。
  
  现代化的机器人性能水平与宇航员的能力相当,Deos任务有望首次进行此类试验——该项目作为一个国家技术演示验证活动,服务于低地球轨道内失效卫星的维修与定点回收。
  
  Deos的次级任务是为引入可持续的轨道基础设施做准备。这聚焦于遥操作的有效方法,以及控制卫星的自动化程序。
  
  Deos首次轨道试验将发射两颗卫星,卫星在轨分离后,将执行一系列机动,包括交会、非破坏性捕获,之后再入大气层燃尽。 (中国航天系统科学与工程研究院   许红英 侯丹)



--------------------------------------------------

动态(2)

        
NASA选择先进的机器人项目 进行开发
NASA Selects Advanced Robotics Projects for Development   
Sept. 14, 2012 RELEASE : 12-323  
        
WASHINGTON -- NASA has selected eight advanced robotics projects that will enable the agency's future missions while supporting the Obama administration's National Robotics Initiative.
华盛顿 - NASA已选择了8个先进的机器人技术项目,这将给力该机构未来的任务,同时支持奥巴马政府的国家机器人计划。
     
The projects, ranging from technologies for improving robotic planetary rovers to humanoid robotic systems, will support the development and use of robots for space exploration, as well as by manufacturers and businesses in the United States.
该项目,函盖了从改善机器人行星漫游者技术 人形机器人系统,将支持机器人进行太空探索的使用和开发,以及美国的厂家和商家。
     
Robots can work beside, or cooperatively, with people to enhance individual human capabilities, performance and safety in space as well as here on Earth. Co-robotics, where robots work cooperatively with people to enhance their individual human capabilities, performance and safety, is a valuable tool for maintaining American leadership in aerospace technology and advanced manufacturing.
机器人可以在人们的身旁工作或合作,在太空以及在地球上,提高具体个人的能力、性能和安全性。合作机器人,机器人与人协同工作,提高他们的个别人的能力,性能和安全性,在航空航天技术和先进制造(领域)为维护美国的领导地位是一个有价值的工具。
     
"Robonaut, NASA's robotic crewmember aboard the International Space Station, is being tested to perform tasks to assist our astronauts and free them up to do the important scientific research and complex engineering taking place each day on our orbiting national lab," said NASA Chief Technologist Mason Peck at NASA Headquarters in Washington. "Selected through our participation in the National Robotics Initiative, these new projects will support NASA as we plan for our asteroid mission in 2025 and the human exploration of Mars around 2035."
“Robonaut,NASA的机器人ISS太空站上的乘员 ,每一天正在进行测试执行任务,以协助我们的宇航员,并解放他们去做(更)重要的科研和复杂的工程,在我们的轨道国家实验室” 设在华盛顿NASA总部的NASA首席技师梅森啄说。“通过我们参与的国家机器人计划选择,这些新项目将支持 NASA,到2025年,我们计划为我们的小行星飞行任务 载人探索火星在2035年左右。
     
The proposals NASA has selected for development are:
这些NASA建议选择 开发的(项目)是:
                    
-- "Toward Human Avatar Robots for Co-Exploration of Hazardous Environments," J. Pratt, principal investigator, Florida Institute of Human Machine Cognition, Pensacola
为危险环境的合作探索,推动机器人的拟人化
J.普拉特,主要研究者,佛罗里达州的人机认知研究所,彭萨科拉
     
-- "A Novel Powered Leg Prosthesis Simulator for Sensing and Control Development," H. Herr, principal investigator, Massachusetts Institute of Technology, Cambridge
一种新的动力腿假体模拟器的传感与控制开发。“
H.杜林,主要研究者,麻省理工学院,剑桥
     
-- "Long-range Prediction of Non-Geometric Terrain Hazards for Reliable Planetary Rover Traverse," R. Whittaker, principal investigator, Carnegie Mellon University, Pittsburgh
对可信赖的行星漫游器行驶在非几何地形的冒险的长期预测 R.惠特克,主要研究者,卡内基 - 梅隆大学,匹兹堡
     
-- "Active Skins for Simplified Tactile Feedback in Robotics," S. Bergbreiter, principal investigator, University of Maryland, College Park
活性皮肤简化触觉反馈的机器人。
S. Bergbreiter,主要研究者,美国马里兰大学,学院公园
     
-
-- "Actuators for Safe, Strong and Efficient Humanoid Robots," S. Pekarek, principal investigator, Purdue University
致动器安全,强大和有效的人型机器人
S. Pekarek,主要研究者,普渡大学(Purdue University)
     
-
-- "Whole-body Telemanipulation of the Dreamer Humanoid Robot on Rough Terrains Using Hand Exoskeleton (EXODREAM)," L. Sentis, principal investigator, University of Texas at Austin
在粗糙地形下,使用手形外骨骼(EXODREAM)的梦幻般类人机器人 的全身远距离操作系统, L. SENTIS,主要研究者,德克萨斯大学奥斯汀分校
     
-
-- "Long, Thin Continuum Robots for Space Applications," I. Walker, principal investigator, Clemson University, Clemson, S.C.
用于空间应用的长、薄连续(形状)的机器人
I,沃克,主要研究者,克莱姆森大学,克莱姆森,南卡罗来纳州
     
-- "Manipulating Flexible Materials Using Sparse Coding," R. Platt, principal investigator, State University of New York, Buffalo
使用稀疏编码 操作软性材料,R.普拉特,主要研究者,纽约州立大学,水牛
     
The National Science Foundation (NSF) managed the solicitation and peer review selection process for these NASA awards. Awards range from $150,000 to $1 million, with a total NASA investment of $2.7 million.
美国国家科学基金会(NSF)管理的招标和同行审查这些NASA 资助的 选择过程。 资助范围从$ 150,000到$ 100万, NASA总投资270万美元。
     
NASA has a long history of developing cutting-edge robotic systems for use in space exploration. NASA also partners with American businesses, universities and other federal agencies to transfer those technologies back into the nation's industrial base, improving manufacturing capabilities and economic competitiveness.
NASA有着悠久的历史,开发最先进的机器人系统用于太空探索。 NASA也与美国企业合作伙伴,大学和其他联邦机构转让这些技术回 国家的工业基础,提高制造能力和经济竞争力。
     
Recently, tremendous advances in robotics technology have enabled a new generation of assistive systems and devices in industries as diverse as manufacturing, logistics, medicine, health care, military, agriculture, and consumer products.
最近,机器人技术的巨大进步已启用了新一代的制造业等不同行业的辅助系统和设备,后勤,医药,保健,军事,农业,和消费电子产品。
     
As part of the National Robotics Initiative, NSF, NASA, the National Institutes of Health and the U.S. Department of Agriculture have managed a joint solicitation, seeking to engage our next generation of roboticists for the new global technology economy. All participating federal agencies are working with partners to foster the exchange of ideas and technologies that will directly benefit American today and well into the future.
作为国家机器人倡议“的一部分,NSF,NASA,美国国立卫生研究院和美国农业部管理一个联合征集寻求参与我们 下一个世代的新的全球技术经济的机器人专家。所有参加联邦机构正与合作伙伴,这将直接惠及​​美国目前以及未来的理念和技术,以促进交流。
     
The purpose of the initiative is to encourage innovative collaborative research that combines computer and systems science with mechanical, electrical and materials engineering and social, behavioral and economic sciences. The resulting research will tackle the most important and challenging problems in producing this class of human-assisting co-robotics.
该倡议的目的是鼓励创新的合作研究,将计算机与系统科学与机械相结合,电气和材料工程和社会,行为和经济科学。研究解决的最重要和最具挑战性的问题,这一类人的协助合作机器人。
     
NASA's Office of the Chief Technologist and the Space Technology Program lead the agency's participation in the National Robotics Initiative. NASA's Space Technology Program is dedicated to innovating, developing, testing, and flying hardware for use in NASA's future science and exploration missions. NASA's technology investments provide cutting-edge solutions for our nation's future.
NASA的办公室的首席技术和空间技术方案导致机构参与的国家机器人计划。 NASA的空间技术计划,致力于创新,发展,测试,和飞行硬件,用于 NASA未来的科学和 探索任务。 NASA的技术投资为我们提供了先进的解决方案 国家的未来。
     
For more information about NASA's participation in the National Robotics Initiative, visit:
欲了解关于NASA参与国家机器人计划的更多信息,访问:
http://www.nasa.gov/robotics
more:
     
 楼主| hkhtg090201 发表于 2013-1-12 16:48 | 显示全部楼层
hkhtg090201 发表于 2012-6-27 23:02
ISS:Dextre和RRM完成第二轮联合行动 – CDRA痊愈ISS: Dextre and RRM complete second round of joint o ...

NASA的机器人加油演示准备起动太空扩展能力
NASA's Robotic Refueling Demo Set toJumpstart Expanded Capabilities in Space
Published by Klaus Schmidt on Thu Jan 10,2013 11:20 pm via: NASA

         
In mid-January, NASA will take the nextstep in advancing robotic satellite-servicing technologies as it tests theRobotic Refueling Mission, or RRM aboard the International Space Station. Theinvestigation may one day substantially impact the many satellites that deliverproducts Americans rely upon daily, such as weather reports, cell phones andtelevision news.
1月中旬,NASA将采取下一个步骤,推动先进机器人卫星服务技术,测试它的机器人加油任务,或(称为)ISS上的RRM。该研究可能有一天会大大影响很多颗卫星,(这些卫星)提供给美国人每天依靠的产品,如天气报告,手机和电视新闻。
                     
During five days of operations, controllersfrom NASA and the Canadian Space Agency will use the space station’s remotelyoperated Special Purpose Dexterous Manipulator, or Dextre, robot to simulaterobotic refueling in space. Operating a space-based robotic arm from the groundis a feat on its own, but NASA will do more than just robotics work ascontrollers remotely snip wires, unscrew caps and transfer simulated fuel. Theteam also will demonstrate tools, technologies and techniques that could oneday make satellites in space greener, more robust and more capable of deliveringessential services to people on Earth.
为期五天的操作中,NASA和加拿大宇航局控制人员将使用 空间站的远程操作专用灵巧机械手,或Dextre机器人,来模拟机器人在太空加油。从地面操作空间机器人手臂对它自己一个绝艺,但NASA将做的更多,不仅仅是机器人控制人员远程剪断电线,拧开瓶盖和传输模拟燃料的  工作。该小组也将证明,可能有一天使卫星在空间更环保,更健壮,更能够对 地球上的人的工具,技术和工艺提供必要的服务。


WhyFix or Refuel a Satellite?
为什么要修复或给一个卫星加油?
                 
… 意义:略…
HowRRM Is Making a Difference
RRM是如何与众不同的
               
… 前期回顾:略 …
                 
The RRM refueling demonstration on Jan.14-24 will employ the Canadian-built Dextre, NASA’s RRM module and four uniqueRRM tools to show that space robots controlled from Earth — hundreds or eventhousands of miles below — can transfer fuel to satellites with triple-sealedvalves that were never designed to be accessed.
1月14至24日的RRM加油演示将采用加拿大制造的Dextre,NASA的 RRM模块和4个独特的 RRM工具来  …显示空间机器人控制从地球 - 数百甚至数千英里下面 -可以将燃料的卫星的三重密封阀,从来没有被访问。
               
The RRMoperations team is very excited about the upcoming refueling demonstration,”says Charlie Bacon, RRM operations manager. “Over the last two years, the teamhas put in more than 300 hours of preparation — reviewing procedures, runningsimulations, and communicating with team members from other NASA centers andour international partners. When we finally execute the namesake task of RRM,we anticipate that our work will culminate in proving that in-orbit satelliterefueling is no longer future technology — it’s current technology.”
“ RRM操作团队非常兴奋即将到来的加油演示。“  查理培根说,他是RRM业务经理。“在过去的两年里,团队已在超过300个小时的准备 - 审查程序,运行模拟,并与 团队成员来自其他 NASA中心和我们的国际伙伴。当我们最后执行的同名任务 RRM,我们预计,我们的工作将最终证明了在轨卫星加油不再是未来的技术 -这是目前的技术。
               
Although the RRM module will never fix orrefuel a satellite itself, its advanced tools and practice runs are laying thefoundation for future in-orbit robotic servicing missions. Additional RRMdemonstrations will continue into 2013, with a new round of servicing taskboards, tools and activities slated to continue its investigations through2015.
虽然RRM模块将永远不会修复或 为一个卫星本身加油,(但)其先进的工具和实践运行为未来的在轨机器人服务任务 奠定了基础。额外的RRM演示将在2013年继续进行,与服务任务板的新一轮,工具和活动,预计继续研究一直到2015年。
                        
What’sNext in Robotic Satellite Servicing?
机器人卫星服务的下一步是什么?
                  
The satellite-servicing concept that RRM isadvancing is one that NASA has been developing for years. Beginning with theSolar Maximum repair mission in 1984, the servicing philosophy paved the wayfor five successful astronaut-based missions to upgrade and repair the HubbleSpace Telescope and has been practiced more recently in spacewalks to assembleand maintain the space station.
RRM卫星服务是NASA已多年开发并正在推进的概念之一。随着1984年太阳最大修复任务而开始,五个成功的基于宇航员的任务 服务理念铺平了道路升级和修复的哈勃太空望远镜,最近已实行在太空walks的组装和维护空间站。
                        
With the RRM on the space station and arobust technology development campaign being conducted on the ground, NASA istesting capabilities for a new robotic servicing frontier. Since 2009, theSatellite Servicing Capabilities Office at NASA’s Goddard Space Flight Centerin Greenbelt, Md., has been aggressively advancing therobotic technologies for a free-flying servicer spacecraft that could access,repair and refuel satellites in GEO.
随着RRM放置在空间站 和 在地面上进行 强大的技术开发活动,NASA正在测试一个新的机器人服务前沿的能力。自2009年以来,美国马里兰州NASA的戈达德太空飞行中心的绿地卫星服务能力办事处,积极推进机器人技术一个自由飞行服务商的航天器可以1.对地球静止轨道的卫星1.)访问、2).维修和3)加油。
   
To this end, the SSCO team has been studyinga conceptual servicing mission and building technologies to address unchartedterritory such as autonomous rendezvous and docking, propellant transfersystems for zero gravity and specialized algorithms (computer commands) toorchestrate and synchronize satellite-servicing operations. A systemsengineering review on this conceptual mission was recently conducted withpositive responses from peer experts and external participants.
为此,这个SSCO 团队一直在研究一个概念上的维修任务和建造技术,以解决未知的领域,如自主交会对接,零重力和专门的算法(计算机指令)的推进剂输送系统,以协调和同步卫星服务业务。与同行专家和外部参与者的积极响应,最近进行了一个系统的工程评审这个概念的任务。
                    
Reed and the SSCO team see manyapplications across NASA for these new, game-changing capabilities.
Reed和SSCO的团队 看到了许多 这些新的、改变游戏规则的能力 在整个NASA中的 应用。
                  
The technologieswe’re building to help rescue satellites in five years could be the very sameones used to clean up space ten years in the future or save a spacecraft on theway to Mars 30 years from now,” says Reed. “NASA is acting today to ensure thatwe have the capabilities Americaneeds for the future. With satellite servicing technologies, we’re bolsteringthe agency’s long-term strategy as we invest in near-term tactical technologyinvestments. RRM is just the beginning.”
“我们正在建造的这个五年内协助1.)救援卫星的技术,与 在未来的十年中 2.)清理空间(碎片的技术?)可能是非常相同的,或从现在30年后3.)救援一艘去火星道路上的太空船“ 里德说。“NASA正在行动,以获得对美国未来需求(我们)的能力。与卫星服务技术一起,我们正在支撑着该机构的长期战略,同时我们投资于短期的战术技术投资。RRM仅仅是个开始。
     

PS:圣诞节过了,元旦过了,也该忙活了。

点评

为从空间站升级到空间基地做基础技术储备!  发表于 2013-1-12 19:02
 楼主| hkhtg090201 发表于 2013-1-12 23:00 | 显示全部楼层
hkhtg090201 发表于 2013-1-12 16:48
NASA的机器人加油演示准备起动太空扩展能力NASA's Robotic Refueling Demo Set toJumpstart Expanded Cap ...

下面的图片必须补充上
   
RRM_demo_illustration1.jpg
 楼主| hkhtg090201 发表于 2013-1-26 18:43 | 显示全部楼层
RRM(ISS机器人加油演示任务)最近一些天的情况:

  ----------------------------------------------------
                    
NASACSAISS上开始测试卫星加油 14日开始)
NASA and CSA begin testing satelliterefueling on the ISS
By David Szondy  --- January 22, 2013

             … 全文略…

很多图:
                                                         
                                    

                                                     
                                             
RRM活动由于软件问题暂停
RRM Activities Paused While Controllers Analyze Software
         … 全文略 ...
   
   
                        
                        
空间站机器人卫星加油测试重新开始
Robotic Satellite-Refueling Test Resumes onSpace Station
Writer Date: 24 January 2013 Time: 05:25 PMET
                        
An International Space Station experimenttesting the ability of robots to repair and refuel orbiting satellites hasresumed, after being stalled for a week by a software glitch.
由于软件故障在被拖延了一个星期的后,一个ISS实验测试机器人的维修和加油轨道卫星的能力已恢复。
                        
NASA的一些视频
23日:
25日:

 楼主| hkhtg090201 发表于 2013-1-27 09:17 | 显示全部楼层
卫星的加油试验台完成在轨运行演示
Satellite refueling testbed completes demoin orbit
  BYSTEPHEN CLARK -- SPACEFLIGHT NOW --Posted: January 25, 2013

            
… …
… 略 …
… …
"Last night was the final act,"Reed said Friday. "That's when we picked up the nozzle tool, we threadedonto the exposed fill-and-drain valve threads ... [and] we pumped 1.3 liters ofliquid ethanol across this robotically-mated interface with no leakage."
“昨天晚上是最后一幕,” 里德星期五说。“这时候,我们拿起喷嘴工具,我们暴露的填充和排水阀的螺纹拧到... [同时]我们注入了1.3的液态乙醇进入这个机器人接合的接口同时没有发生泄漏。
                    
… 略…
                          

                    
                                                           ------------------------------------------
专用灵巧和RRM成功完成卫星加油演示
Dextre and RRM complete successfulsatellite refuelling demo
January 26, 2013 by Pete Harding
     
Aboard the International Space Station(ISS) over the past two weeks, Dextre, the Canadian “robotic hand”, and NASA’sRobotic Refuelling Mission (RRM) payload have together made history in provinga vital capability for future space exploration and utilisation – the abilityto robotically refuel a satellite in the space environment.
在 ISS上, 在过去的两个星期,专用灵巧手,一个加拿大“机械手”,和NASA的机器人加油任务(RRM),有效载荷共同创造了历史证明是一个重要的能力,为未来的太空探索和利用 -的机器人加油的卫星在太空环境中的能力。
     
The successful demo opens new doors forfuture missions to extend the lifetime of satellites, with it creating anentire new industry dedicated to satellite refuelling,
该成功的演示为未来延长卫星寿命的任务打开了新的大门,它创造了一个  全新的专门卫星加油行业.
                  
Dextreand RRM background:
专用灵巧手和RRM背景:
Dextreand RRM’s big task - Satellite refuelling demo:
专用灵巧手和RRM的宏大任务 - 卫星加油​​演示:
                       
… 略…

头像被屏蔽
liyue1997 发表于 2013-1-27 13:35 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
头像被屏蔽
liyue1997 发表于 2013-1-27 18:09 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
suv 发表于 2013-1-27 20:57 | 显示全部楼层
liyue1997 发表于 2013-1-27 18:09
太空旅馆,应该是私人的,现在不是有个公司在搞充气的嘛
第2项必须得,一天一班不过365班而已,现在太空 ...

太空旅馆肯定私人的,十年内如果商用化,必须成本足够低安全性足够高,才能达到规模经济。现在看也就spx和维珍有成形的计划。不过比尔盖茨说过,人们预测往往对二年之后太过乐观十年之后太过悲观,希望第二项不是太乐观吧。
 楼主| hkhtg090201 发表于 2013-1-29 07:43 | 显示全部楼层
hkhtg090201 发表于 2013-1-27 09:17
卫星的加油试验台完成在轨运行演示Satellite refueling testbed completes demoin orbit  BYSTEPHEN CLARK  ...

NASA机器人在轨燃料加注任务进展(上)
新闻发布时间:2013-01-28
  [据美国航空航天局戈达德太空飞行中心网站2013年1月24日报道] 美国国家航空航天局(NASA)继续在国际太空站上开展名为“机器人燃料加注任务”(RRM)的技术演示验证。模拟卫星锁线已经切割完毕、模拟卫星冷却剂气体设备已拆除。现在NASA历经多年准备,将开始RRM燃料加注试验。
    
  RRM演示验证的技术未来可能会对卫星产生重要影响。NASA希望通过发展机器人在轨服务能力来维修或为地球静止轨道(GEO)卫星加注燃料,增加卫星弥足珍贵的功能寿命,并扩展卫星运营商的选择能力。卫星运营商面临着不可预知的紧急情况,更加严峻的经济需求以及星座的老化。NASA还希望此类新技术能够帮助推动迅速兴起的商业卫星服务业的发展。
     
  1月23日,RRM团队准备就绪:卸下了RRM连接管工具并将其移动到RRM模块实验燃料阀门附近位置。RRM工具静止不动并做好了准备执行史无前例的机器人流体传输任务,以验证配备一套复杂工具的遥操作机器人技术,为“没有专用燃料加注接口”的卫星加注燃料。1月24日的机器人燃料加注任务包括:
  
  第一步:连接管工具将插入RRM试验燃料阀,该阀门称为RRM模块“铅垂注入/排出阀”
  
  第二步:位于NASA马歇尔太空飞行中心的操作者将向RRM发送精确的命令序列启动RRM,RRM通过其流体传输系统和附属燃料阀将液态乙醇传输进入连接管工具,随后再传输回到RRM模块的贮液器中。
  
  第三步:当流体传输完成后,连接管工具将使用创新性技术与“铅垂注入/排出阀”断开。连接管工具将把其自身的一部分即灵巧“快速断开”装置留在“铅垂注入/排出阀”上,以便为未来简易的和更高效的燃料加注连接创造条件。
  
  第四步:加拿大灵巧机械臂将把连接管工具放回RRM中,并安装好稳定装置。
  
  第五步:RRM燃料加注演示验证将正式结束
。(中国航天系统科学与工程研究院 陈杰 陈菲)


--------------------------------------


NASA机器人在轨燃料加注任务进展(下)
新闻发布时间:2013-01-28
  [据美国航空航天局戈达德太空飞行中心网站2013年1月25日报道] 美国国家航空航天局(NASA)戈达德太空飞行中心宣布“机器人燃料加注任务”(RRM)已成功完成同名任务中的第三次在轨演示验证,即“史无前例的机器人燃料加注”。该中心通过进行在轨流体传输,验证了配备有精密工具、采用创新性推进剂传输系统以及精心设计程序的机器人遥控技术。证明现有“没有专用燃料加注接口”的卫星是可以进行燃料加注的。
  
  RRM代表了用于卫星维修维护的太空机器人及相关先进技术进入了新时代。NASA戈达德卫星服务能力办公室(SSCO)正在评估本次具有重要意义的验证数据,将通过官方记者招待会和视频公布详细结果。
  
  NASA戈达德太空飞行中心、戈达德卫星服务指挥中心和戈达德卫星服务中心参与了本次演示验证。加拿大航天局(CSA)设计并制造了专用灵巧机械臂(Dextre)。NASA和CSA的操作者在NASA约翰逊航天中心操纵Dextre。在NASA马歇尔太空飞行中心的操作者负责指挥RRM的推进剂传输系统传输乙醇流体。
  
  1月24日验证中最令人兴奋的时刻是:当由戈达德中心建造的RRM连接管工具离开燃料阀的时刻。在视频中,可以看到连接管工具被收回,并将一个快速断开装置留在了阀门上。看到的流体是乙醇,是一种精心选择的卫星燃料替代品,共有1.7升,有一小部分乙醇如预期的一样产生了喷溅。(中国航天系统科学与工程研究院 陈杰 陈菲)

  --------------------------------------------------------


加拿大灵巧机械臂成功为模拟卫星加注燃料,完成重要的空间机器人试验
新闻发布时间:2013-01-28
  [据加拿大航天局网站2013年1月26日报道] 2013年1月25日,国际太空站(ISS)上的加拿大航天局灵巧机械臂(Dextre)历史性的成功为安装在ISS外部的模拟卫星加注了燃料。为模拟卫星加注燃料并安装“快速断开”阀门是“机器人燃料加注任务”(RRM)技术演示验证的关键部分。RRM是美国国家航空航天局(NASA)和加拿大航天局(CSA)的联合项目,旨在验证利用在轨机器人为卫星提供服务并补充燃料以扩展卫星的工作寿命。
  
  在RRM任务中,NASA戈达德太空飞行中心设计了模拟卫星模块以及Dextre用户机械工具。自RRM操作任务从2011年开始以来,Dextre已经执行了三项测试任务,旨在证明机器人能够在太空执行为“没有专用燃料加注接口”的卫星提供服务的能力。
     
  在最近的一项操作中,Dextre拆除了两个安全螺帽,切割了两条细的连接锁线,最终将一小部分液态乙醇传输进入到洗衣机大小的RRM模块中。最近的操作极其复杂,原因在于在太空处理液体需要极其精细以防止危险性泄露。
  
  为本次试验制造的特殊工具使Dextre能够密封工具和燃料阀间的连接处,从而消除了泄露的可能性。燃料软管本身增加了试验难度,该软管对Dextre机械手施加了拉力。本次演示验证通过将NASA和CSA机器人控制团队的经验结合在一起,圆满完成了“史无前例”的太空加注试验。
  
  RRM是发展开创性的卫星服务领域机器人技术的重要步骤。通过为在轨硬件加注燃料或进行维修能够使其在成为太空碎片前延长其寿命。
  
  为在轨卫星加注燃料的能力将能够节省卫星运营商重要的建造成本,不需要发射新的替换卫星。目前在近地轨道有超过1100颗功能卫星在轨运行,其中多颗卫星单价达到数百万美元。还有2500颗失效的卫星仍然位于地球轨道上。因此降低卫星的建造成本和替换成本至关重要。(中国航天系统科学与工程研究院 陈杰 陈菲)

 楼主| hkhtg090201 发表于 2013-1-29 07:53 | 显示全部楼层
hkhtg090201 发表于 2013-1-29 07:43
[/td][/tr]
[/table][/td][/tr]
[/table]

   
猜想这次应该是针对有专门燃料输入阀门的卫星进行的演示,猜想以后可能要对完全密封燃料箱进行加油,那个要钻透3层保护壳,有破坏性动作,应该比这次复杂多了。
  
 楼主| hkhtg090201 发表于 2013-2-14 19:26 | 显示全部楼层
NASA的加油演示证明了卫星服务技术的可行性
NASA'S Refueling Demonstration ProvesViability Of Satellite-Servicing Technologies
Feb. 08, 2013  -- RELEASE : 13-046

            
  WASHINGTON -- NASA hasdemonstrated robotic fluid transfer in space, an objective that will helpinform the development of robotic technology to refuel satellites. Thefirst-of-its-kind demonstration was performed during the Robotic RefuelingMission (RRM) aboard the International Space Station.
华盛顿消息 -  NASA演示了在太空中机器人(实施)流体传送,… …
     
725615main_artist_XLpsp-610x406.jpg
"This achievement is a major stepforward in servicing satellites," said Frank Cepollina, associate directorof the Satellite Servicing Capabilities Office at NASA's Goddard Space FlightCenter in Greenbelt, Md. "RRM gives NASA and the emerging commercialsatellite servicing industry the confidence to robotically refuel, repair andmaintain satellites in both near and distant orbits -- well beyond the reach ofwhere humans can go today."
… …
A joint effort with the Canadian SpaceAgency, RRM uses the International Space Station as test bed for the researchand development of robotic satellite-servicing capabilities. During six days ofactivity last month, controllers on the ground at NASA's JohnsonSpace Centerin Houston usedthe space station's remotely operated Dextre, a robotic space handyman, to cutwires, remove and stow caps and perform tasks necessary to refuel satellitesnot designed to be refueled.
… …
     
The cutting-edge technologies that RRM isdemonstrating could extend the lives of many of the hundreds of satellitescurrently in geosynchronous Earth orbit. These are satellites that deliveressential services such as weather reports, cell phone communications,television broadcasts, government communications and air traffic management.
RRM被演示的这个尖端技术,可以延长在地球同步轨道的多达数百个卫星的寿命。这些卫星提供基本服务,如天气报告,手机通讯,电视节目,政府通信和空中交通管理。
            
RRM tasks scheduled to be performed laterthis year include thermal blanket cutting and fastener and electronictermination cap removals. NASA anticipates RRM technologies may help boost thecommercial satellite-servicing industry in the future. Such servicingcapabilities could greatly expand options for government and commercial fleetoperators.
RRM定于今年晚些时候进行的任务包括热毯切割  以及  紧固件和电子端接帽的移除。 … …
   
For information, updates and videos aboutRRM and NASA's satellite servicing activities, visit:
http://ssco.gsfc.nasa.gov
For more information about theInternational Space Station and its crew, visit:
http://www.nasa.gov/station

头像被屏蔽
a123s0000 发表于 2013-2-15 21:21 | 显示全部楼层
提示: 作者被禁止或删除 内容自动屏蔽
 楼主| hkhtg090201 发表于 2013-2-28 19:09 | 显示全部楼层
机器人在轨燃料加注任务(RRM)将进行地面实验
   
新闻发布时间:2013-02-28
   
  [据美国安全太空杂志网站2013年2月27日报道]  美国国家航空航天局(NASA)的机器人在轨燃料加注任务(RRM)的下一个任务步骤将是在2013年下半年进行一次地基模拟实验,把腐蚀性的燃料氧化剂输送给模拟卫星。
  
  位于戈达德航天飞行中心的卫星服务能力办公室的副主任弗兰克•塞波琳娜(Frank Cepollina)表示,NASA打算演示验证传输二氧化氮。但这次不是在太空而是在地面进行,在戈达德的技术人员将操纵在肯尼迪的机器人。

  RRM演示验证任务将采用在航天器上使用的危险化学品之一二氧化氮作为氧化剂。机器人和模拟卫星将安置在肯尼迪航天飞行中心,同时操作人员将从1400千米以外的戈达德航天飞行中心发出指令。试验将验证机器操作能够安全地执行存储和操控,如果需要,还可以清理危险的腐蚀性液体。任务将依靠于现有的机器人硬件和用户控制软件。为了实施液体传输操作,此次试验还需要使用二氧化氮泵,目前该设备尚未交付使用。

  这是继1月在国际太空站上操作人员利用机械臂向模拟卫星传输液态乙醇后又一个新的实验步骤。
  
  NASA从2009年到2013年,已在建造、发射、运行RRM硬件上花费了4180万美元。NASA计划在2013年8月和2014年利用日本货运飞船为第二组演示验证任务运输RRM硬件。

  RRM的项目目标是开发机器人卫星服务所需的技术,特别是针对昂贵的地球同步轨道通信卫星,这种卫星没有专用的燃料加注或服务的设施。 (中国航天系统科学与工程研究院 陈菲 许红英)

 楼主| hkhtg090201 发表于 2013-5-6 15:48 | 显示全部楼层
hkhtg090201 发表于 2013-1-29 07:53
猜想这次应该是针对有专门燃料输入阀门的卫星进行的演示,猜想以后可能要对完全密封燃料箱进行加油, ...

国际太空站重新开始卫星维修演示验证


新闻发布时间:2013-05-06
  
  [据美国aviationweek网站2013年5月2日报道]  5月1日,美国国家航空航天局(NASA)飞行控制人员利用加拿大机械臂/专用灵巧机械手(Dextre)执行了国际太空站外部的机器人加注任务,演示验证了一系列卫星维修能力。
  
  具体工作包括:操纵同轴电缆连接器,拆除螺丝和绝缘毡,这些都是没有考虑接受在轨服务的航天器上的典型组件。这些工作预计将持续到下周。
  
  为期三年的“机器人燃料加注任务”(RRM)将耗资2260万美元,执行任务的RRM是洗衣机大小的三维任务板,其上携带有戈达德太空飞行中心开发的工具包。这个硬件最终将放置在太空站右舷桁架的快速后勤搬运器-4(ELC-4)之上,为太空行走及后续机器人操作提供电力和数据连接。
  
  最新一轮的演示验证是在2013年1月进行的,NASA利用21米长的加拿大机械臂/Dextre联合体,切断锁线,拆除模拟燃料帽,将1.7公升的乙醇燃料注入RMM。
  
  双臂Dextre已经放置在ELC-4工作地点,准备实施新的演示验证:
  
  •拆除超小型螺帽,模拟进入卫星的电子数据系统,将故障组件显露出来。就像机修工要使用诊断显示电缆,接上汽车计算机,才能把发动机问题隔离出来。Dextre接受命令,拆除模拟的同轴无线电螺帽,并将它们收藏在RRM模块的容器内。
  
  •拆除并存储小螺丝。这些紧固件把保护盖板固定在卫星上,它们必须是无螺纹的,因为要使用手持螺丝刀处理。拆除盖板可以把故障航天器组件显露出来,以便更换。因为要拆除超小型螺帽,所以安全保存螺丝是必不可少。
     
  •非破坏性地拆除多层绝缘体(MLI),这种柔性的防热毡覆盖在燃料阀、访问端口和其他可能被修复的组件上。面临的挑战是需要切割、剥离和折叠多层绝缘体,这样在维修活动结束后,它还可以被重新使用。 (中国航天系统科学与工程研究院   许红英 陈菲)
东山再起 发表于 2013-5-8 15:13 | 显示全部楼层
常在这个论坛上混的人,英语都被练好了吧?
 楼主| hkhtg090201 发表于 2013-7-18 13:21 | 显示全部楼层
下一代加拿大机械臂
The Next-Generation Canadarm
Published by Klaus Schmidt on Sat Jul 13,2013 2:29 pm via: CSA

      
A suite of robotic technologies designed tohelp explore space further and longer
  一套机器人技术装备,旨在帮助实施更长更远的探索太空。
                     
As the world’s nations work towardsexpanding the frontier of space exploration to destinations like the Moon orMars, Canada is planning ahead to develop the types of robotic technologiesthat will be critical to future missions, from space telescopes to the vehiclesthat may carry humans beyond Earth’s orbit. The extensive flottila ofsatellites near Earth that provides us with daily services (like weather andcommunications satellites) may also require robotics support for maintenance orrefueling.
当世界各国努力扩大太空探索的前沿目标,如月球或火星等目的地,加拿大正在向着发展机器人(这种)类型的技术进行规划,这对未来的任务将是关键,从太空望远镜到可运载人类到达地球以远轨道的运载器。为我们提供日常服务(如气象和通信卫星)的、广阔地漂浮在地球附近卫星,可能还需要维修或加油机器人的支持。
                  
With over three decades operating theiconic Canadarm on the Space Shuttle, and Canadarm2 and Dextre on board theInternational Space Station (ISS), Canada has earned an enviablereputation for excellence in advanced space robotics. Building on this legacy,the Next-Generation Canadarm (NGC) is the Canada’s futuristic next step inspace-based robotic technology.
凭借在航天飞机上超过三十年的操作的标志性的加拿大臂,和在ISS上的 Canadarm2和专用灵巧机器手,加拿大已经赢得了令人羡慕的声誉 为卓越先进的太空机器人。这份遗产的基础上,在 下一代加拿大臂(NGC是加拿大的未来主义 下一个步骤 基于太空的机器人技术。
                  
ngc-missions-op-station-610x406.jpg
The Next-Generation Canadarm (NGC) facilityprovides a suite of robotic systems with the capability to support bothlow-Earth orbit and deep space missions, from repairing communicationsatellites to assisting human exploration missions to the Moon, asteroids andbeyond. (Credit: Canadian Space Agency)
下一代加拿大臂(NGC)设施提供了一套机器人系统装备,有能力支持包括低地球轨道和深空任务,从修理通信卫星到协助载人探索月球、小行星和更长远的任务。 (来源:加拿大宇航局)
                       
Built under contract for the Canadian SpaceAgency (CSA) by MacDonald, Dettwiler and Associates Ltd. (MDA), NGC consists offour versatile, state-of-the-art robotic prototypes and a mission control station:
由麦克唐纳(公司)根据合同为加拿大宇航局(CSA)建造,戴特威尔及联营有限公司(MDA),NGC由四种通用,国家的最先进的机器人原型和任务控制中心站:
     
●NGC’s 15-metre robotic arm designed to fit onboard future smallerspacecraft.
●A smaller, 2.5 meter robotic arm equipped with its own set ofsophisticated tools to repair satellites in space.
●A test-bed for proximity operations allows engineers to simulatebringing two spacecraft together for operations in close-contact.
●A satellite docking facility to test the steps required to dock twovehicles together and, finally,
●A mission operations station to control all NGC’s systems remotely.
1. NGC15长的机械臂设计,以适合安装在未来小的航天器上。
2. 一个较小的,2.5米长的机械臂配备有自己的一套复杂的工具,用来修复太空中的卫星。
3. 一个邻近操作测试床,使工程师能够模拟促使 两个航天器一起 为在密切接触中操作。
4. 一个卫星对接设备 测试同时对接2个运载器所需的步骤最后,
5. 一个任务操作台,去远程控制 NGC的所有系统。
                  
                  
TheNext-Generation Large Canadarm
下一代大型加拿大臂
                  
The largest of the five components of theNGC facility, this prototype of a robotic arm has the same 15-metre reach asCanadarm2, but is much lighter and more compact for the smaller spacecrafts ofthe future. The arm’s retractable, telescopic sections allow it to fold up forstorage in less than 5 cubic metres—roughly the volume of a mini-van, whichwould make it compatible with the designs of most new space capsules andvehicles. With six degrees of freedom, the flexible arm can simulate demandingtasks like capturing and docking of large spacecraft for refueling. The armfeatures include advanced hardware, software, and operational capabilities.
NGC设施五个组成部分中最大的一个,这个原型的机器人手臂 与Canadarm2具有相同的可达15米,但对于未来的小航天器,要更轻,更紧凑。臂的伸缩,伸缩部分允许它折叠起来,以存储在小于5立方米与 微型车大致的体积内,这将使它兼容大多数新的太空舱和运载器的设计。具有六自由度,灵活的手臂可以模拟苛刻任务,如为了大型航天器加油的捕获和的对接 。该手臂功能包括先进的硬件,软件,及营运能力。
                           
ngc-grand-canadarm-610x406.jpg
The Next-Generation Large Canadarm is a15-metre robotic arm which is able to collapse and fit onboard future smallerspacecraft. (Credit: Canadian Space Agency)
下一代大型加拿大臂是一个 15米长的机械臂,它能够折叠,以适合放在未来小的航天器上。 (来源:加拿大 宇航局)
                    
      
TheNext-Generation Small Canadarm
下一代加拿大小臂
                        
With a 2.58-metre reach, this smallerrobotic-arm prototype builds on the capabilities of Dextre, the Canadian-builtrobotic “handyman” aboard the ISS. The Next-Generation Small Arm test-bed is asmaller, lightweight, dexterous robot
with advanced electronics, software andcontrol systems to support refueling satellites in space and repairing orreplacing failing components.
有一个2.58米的伸展范围,这个较小的机器人手臂雏形,ISS上加拿大制造的机器人 “勤杂工”专用灵巧的能力基础上建造。这个下一代小臂测试床 是一个较小的、轻巧的机器人, 凭借先进的电子、软件和控制系统,去支持在太空中的卫星加油、以及维修或更换故障组件。
                        
Outfitted with specialized tools, the robotcan perform a variety of intricate tasks including: removing and installingcomponents (orbit replaceable units), removing the protective blankets thatcover satellites; cutting wires; opening and closing fuel valves, andtransferring propellant between servicer and client spacecraft. The smallerCanadarm can be controlled either manually or automatically and can be carriedto various workstations much the same way as Dextre is transported on the endof Canadarm2.
配备专门的工具,该机器人可以执行多种复杂任务,包括:拆卸和安装元件(轨道更换单元),去除保护覆盖卫星的毯子;切割点线;打开和关闭燃油阀,以及在服务航天器和客户航天器之间转移推进剂。较小的加拿大臂可以手动或自动进行控制,可以携带到各种工作站,进行大致相同的方式作为 专用灵巧在 Canadarm2的末端上 的输送。
                     
ngc-petit-canadarm-610x406.jpg
The Next-Generation Small Canadarm, a"cousin" of Dextre, is outfitted with its own set of sophisticatedtools and is designed to repair satellites in space. (Credit: Canadian SpaceAgency)
下一代加拿大小臂,一个专用灵巧的“表妹” ,配备了自己的一套复杂的工具,目的是修复太空中的卫星。 (来源:加拿大 宇航局)
                     
Canadian Astronaut Chris Hadfield looks on at ademonstration of the Next-Generation Canadarm (NGC) Small Canadarm prototypeduring a visit to the NGC prime contractor, MDA of Brampton,Ontario, inSeptember 2012. (Credit: Canadian Space Agency)
加拿大宇航员克里斯·哈德菲尔德看起来在 演示的 下一个世代加拿大所(NGC)小的原型机在加拿大所 访问NGC主承包商,MDA布兰普顿,安大略省,20129月。 (来源:加拿大 宇航局)
                  
TheProximity Operations System Testbed
邻近作业系统测试平台
                    
This test facility consists of twoindustrial robotic systems that simulate the delicate, precise operationsinvolved in bringing two moving spacecraft into close proximity—within just afew metres of each other. The testbed provides realistic simulation models ofthe spacecraft with actual sizes, realistic lighting and camera views.
这个测试设备 由两个工业机器人系统组成,模拟微妙的、精确的操作,使两个运动航天器进入到非常接近的位置  -  彼此接近仅有几米。该试验台提供与航天器实际尺寸 逼真的模拟模型,逼真的照明和摄像头的景观
                        
Once the two vehicles are close together, arobotic arm on a servicing spacecraft could capture an ailing satellite anddock it for repairs, or an operator could command the servicing spacecraft todock itself to a client’s spacecraft.
一旦两个运载器接近到一起,在一个服务性航天器上的一个机械臂,可以捕捉到一个生病的卫星,并停靠维修,或者一个操作员可以命令该服务性航天器把自身对接到一个客户航天器上。
   
ngc-proximite-610x406.jpg
The Proximity Operations System Testbedallows engineers to simulate bringing two spacecraft in close-contact. (Credit:Canadian Space Agency)
邻近作业系统测试平台,允许工程师模拟带来两个航天器近距离接触。 (来源:加拿大宇航局)
                    
TheSemi-autonomous Docking System
半自治系统对接,
                        
Once two spacecrafts are in close quarters,this system is designed to take over and guide a spacecraft through a series ofrobotically performed procedures from initial contact to the final stages oflocking two space vehicles together. While current space docking systems arecontrolled remotely by operators, this facility is equipped with sensors thatautonomously detect successful docking and trigger the mechanisms that rigidizethe docking of two spacecraft.
一旦两个航天器在近距离内存在(维持),该系统旨在接管并引导一个航天器通过一系列的机器人执行的程序,从最初接触到的最后阶段,锁定两个 太空飞行器在一起。虽然目前的空间对接系统是由运营商远程控制,该设施配备的传感器,自主检测成功对接和触发机制,rigidize两个对接 航天器。
     
ngc-amarrage-610x406.jpg
Part of the Next-Generation Canadarm (NGC)project includes a test facility called Semi-autonomous Docking System, whichsimulates the steps required to dock two vehicles together. (Credit: CanadianSpace Agency)
下一代加拿大臂(NGC)项目的一部分,包括一个称为半自治系统对接测试设备,模拟两个运载器一起停靠所需的步骤。 (来源:加拿大 宇航局)
                  
MissionsOperations Station
任务操作站
                        
The four components of the project arechoreographed through a Mission Operations Station, which acts as a mini“Mission Control” capable of remotely planning a servicing mission, fromproximity operations through docking and servicing.
该项目的四个组件通过一个任务操作站被精心地统筹策划 ,作为一个小型“任务控制”起到 能够远程规划服务任务,从接近操作一直到对接和服务
     
Operators at the Missions OperationsStation can conduct tests to demonstrate NGC’s advanced servicing capabilitiesusing either the actual hardware or computer simulations.
任务操作站的操作员可以进行测试,使用实际的硬件或计算机模拟,去演示NGC的先进服务功能。
            
The NGC project was funded through Canada’sEconomic Action Plan.
该NGC项目经由加拿大的经济行动计划资助。
                    
An operator at the helm of the MissionOperations Station has the capability to control the various roboticcomponents. (Credit: Canadian Space Agency)
一位任务操作站的掌舵业务人员 有能力控制各种机器人组件。 (来源:加拿大宇航局)  
        



ngc-mosaique-610x343.jpg
 楼主| hkhtg090201 发表于 2013-8-4 07:49 | 显示全部楼层
本帖最后由 hkhtg090201 于 2013-8-4 07:57 编辑

  
机器人维修测试平台正在升级

Robotic-Servicing Testbed Is Being Upgraded
By Frank Morring, Jr.
July 29, 2013  Credit: NASA


Dextre-NASA.jpg
Dextre, the multipurpose dexterousmanipulator that rides at the end of the International Space Station's (ISS)robotic arm, will acquire some new tools and tasks by year-end.
专用灵巧手,一个多用途灵巧的机械手,座落在ISS上面的机械臂的末端,今年年底将获得一些新的工具和任务

Among the cargo tucked into Japan'sfourth H-II Transfer Vehicle scheduled for launch to the ISS Aug. 4 is Phase IIhardware for NASA's Robotic Refueling Mission (RRM), a testbed the size of awindow air conditioner bolted onto the station truss that mimics operationalsatellites.
放在日本第四次H-II转移飞行器 货物之中的,预定  8月4日发射到ISS的,是NASA的机器人加油任务(RRM)第二阶段的硬件,一个窗式空调器大小的测试床用螺栓固定到该站桁架上,去模仿业务卫星。

After a good workout on the basics ofsatellite repair and refueling, the new gear will allow Dextre to practice morecomplex work—borescope inspections, cryogenic-refueling attachments, rewiringand the like.
在经过了一个很好的卫星维修和加油的基础实验后,该新装置将允许专用灵巧手去练习更复杂的工作,内窥镜检查,低温加油附件,重新布线等。

Engineers at Goddard Space FlightCenter, where the human-servicing missions for the Hubble Space Telescope weredevised, developed the RRM to demonstrate that robotic tools are equal to thetask of servicing satellites in orbit—repairing, relocating or refueling themto extend their service lives. They worked closely with robotics experts at theCanadian Space Agency (CSA), which supplies robotic technology for the station(see page 14).
戈达德太空飞行中心的工程师们,在那里哈勃太空望远镜载人维修任务设计、开发了RRM去演示机器人工具  都是平等的卫星在轨修理服务的任务,搬迁或加油,以延长其使用寿命。他们密切合作,在加拿大的机器人专家宇航局(CSA,提供机器人技术  该站(见第14页)。

Demonstrationin space is the only way to do this,” says Jill McGuire, the RRM project managerat Goddard. “We can do a lot of ground demonstrations with robots in our labs,and tell people until we're blue in the face that this will work. But actuallyshowing them that it works in space is the key to buying down risk and givingthem the confidence that you can repair their satellite.”
做到这一点,在太空(进行)演示是唯一的办法,” 吉尔·麦圭尔说,他是RRM戈达德项目经理。“我们可以在我们的实验室做大量的地面的机器人演示,并告诉人们,直到我们蓝色的脸,这将工作。但实际上,它的作品在太空买跌的风险,并让他们有信心,你可以修复他们的卫星是关键。“

McGuire and her team designed a box studdedwith examples of the fixtures a servicing robot would find on the differentsatellites operating today, and produced a set of tools that use the torqueDextre generates to drive much smaller tools with the precision needed tomanipulate the satellite interfaces.
麦圭尔和她的 团队设计了一个框镶嵌灯具服务机器人会发现在不同的卫星今天,并制作了一套工具使用转矩Dextre产生与所需要的精度来操作的卫星接口驱动更小的工具。

The initial toolkit consisted of a wirecutter, a tool for removing safety caps, a nozzle to pump ethanol—a stand-infor hydrazine or other storable propellants—and a “multifunction tool” with heritagein the pistol-grip tool used by spacewalking astronauts.
最初的工具包,包括一个导线切刀,一种用于除去安全盖的工具,一个喷嘴泵乙醇的立场,肼或其他可存储推进剂和“多功能工具” 传承手枪握在太空行走的宇航员所用的工具。

----------------------------

As we startedtrying to maximize the use of the payload, we decided it was better to use whatwe call a multifunction tool that can use multiple adaptors,” McGuire told thesecond annual ISS research and development conference here. “So themultifunction tool can pick up each of these adaptors, similar to if you wereusing a socket wrench in your garage, and you wanted to change out thesockets.”
“当我们开始试图最大限度地利用有效载荷,“我们决定,这是更好地使用,就是我们所说的一个多功能的工具,可以使用多个适配​​器,
麦圭尔告诉第二届年会  ISS研究和 开发招待会。
“所以,多功能工具可以拿起每个适配器
,如果你在你的车库使用套筒扳手,你想改变的插座。“


The RRM flew to space on the final spaceshuttle mission in July 2011, and since then has carried out a variety of tasksin the experiment's first pha7se. Among the tasks completed were using therobot to: cut wire, manipulate the thermal blankets that typically cover thehardware servicing-spacecraft must handle, remove a variety of the caps thatare found on operational satellites and transfer the simulated storablepropellant through a typical fill-and-drain valve.
2011年7月,该 RRM 随最后的 航天飞机任务飞抵 到太空上,自那时以来开展了丰富多彩的任务在实验的第一阶段。在完成任务中使用机器人:切成丝,操纵热毛毯,通常涵盖的硬件维修航天器必须处理,删除各种业务卫星上发现,通过一个典型的填充和排水阀和传输模拟贮存推进剂的上限。



Controllers from NASA and the CSA, workingfrom consoles at Mission Control Center-Houston, tele-operated Dextre and theRRM toolkit during experiment sessions. The tests went extremely well, saysMcGuire, with none of the redundant systems on the testbed put to use becauseof a problem with a primary. Each tool was equipped with a pair of close-upengineering cameras focused on the work area, which proved valuable inpreventing jams from misalignment.
NASA和CSA的控制人员,工作在休斯敦任务控制中心的控制台上,远程操作Dextre
实验课程期间的RRM工具。测试进行得非常顺利,麦圭尔说,系统测试平台上没有冗余系统的投入使用,(这是)因为有一个主要的问题。每个工具配备有一对近程工程摄像机集中在工作区域,这被证明是有价值的防止卡纸不对

Ultimately, the Satellite ServicesCapabilities Office at Goddard plans to use the station to test a variety ofrobotic technologies that will be needed for deep-space human exploration,including on-orbit assembly of Earth-departure stages and habitats forlong-duration missions. The next step, RRM Phase II, will add one “task board”to the testbed at an empty slot, and replace another board with a new onecarrying different hardware for tasks.
最终,这个戈达德的卫星服务能力办公室计划使用该站来测试各种将需要(应用于)深空载人探索的机器人技术,包括轨道 组装地球出发阶段和栖息地的长期任务。下一个步骤,RRM第二阶段,将添加一个“任务板” 到一个位于空槽上的实验平台,并且为了作业操作,用新带来的一个不同硬件去替换另一​​块板。

A new tool dubbed Vipir, for visualinspection poseable invertebrate robot tool, will be included in the Phase IImanifest to demonstrate semi-autonomous internal inspections of orbitingspacecraft. Vipir will maneuver a camera into the simulated spacecraftstructure, where it will encounter “decision boxes” and try to find a waythrough them without getting stuck, according to McGuire.
一个新的工具被称为Vipir,(是一个)用于目视检查的poseable无脊椎机器人工具,将被包括在 第二阶段舱单内 ,去演示轨道航天器的半自治的内部检查。Vipir将操纵相机 进入一个模拟航天器结构内部,在那里会遇到“判决框” 并试图找到一种方法通过他们(而且)不会被卡住根据麦圭尔说。

Also on the Phase II agenda will bereassembly of cryogenic valves disconnected during Phase I. “We're going totake the next step in complexity, and show how we can now start putting backsome of these components that we took apart,” McGuire says. “Now that you havean open fitting sitting there, how do you attach to that fitting?”
另外在第二阶段工作事项上,将重新组装在第一阶段过程中断开的低温阀门。“我们将采取 下一个复杂步骤,并且演示我们现在如何能够启动,把这些我们拆开的组件的一些放回去,“ 麦圭尔说。“现在,在哪儿,你有一个开放的装置,你如何连接哪个装置?


Other new tasks will include electricalwork with the robot manipulating connectors while a solar-powered LED lightshows engineers on the ground when connections have been made, and a pluggingexperiment with an open aluminum tube that will be checked with pressurizednitrogen and a gauge.
其他新的任务将包括电气工程与机器人操纵连接器,当连接已经完成时,一个太阳能供电LED灯显示给在地面工程师们,并且一个堵塞的实验中,将被检查以开放的铝管用氮气压和压力表。

It's one thing to install a vent plug,” McGuire says. “It's anotherthing to convince people that we are sealing the tube. . . . The ISS continuesto be an invaluable testbed for this type of work.”
“去安装一个通风插头的一件事,” 麦圭尔说。“这是另一种让人信服的事情,我们要密封这个管子。 。 。 。对于这种类型的工作,ISS继续是一个非常宝贵的试验平台。“



PS:随着HTV-4的发射。

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|小黑屋|航空航天港 ( 豫ICP备12024513号-1 )

GMT+8, 2019-9-17 10:55 , Processed in 0.374401 second(s), 22 queries , Gzip On.

技术支持:飞腾网络

© 2001-2018

豫公网安备 41019702002513号

快速回复 返回顶部 返回列表